首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a recently developed Biot number-Dincer number (Bi-Di) correlation for drying applications is presented. The developed correlation is used to determine the moisture diffusivities and moisture transfer coefficients for products subjected to drying. A large number of experimental data taken from various sources in the literature has been utilized for the development of this correlation. Dimensionless moisture distributions were obtained for three regular shaped objects such as slab, cylinder and sphere to verify them with the available experimental measurements. The results show a considerably high agreement between the predicted values from the correlation and measured experimental observations. Thus, the present correlation is considered to be of great importance to design engineers and operators in estimating the moisture transfer parameters in a reasonably simple manner.  相似文献   

2.
The present paper deals with the development of a new Biot number-lag factor (Bi-G) correlation for drying applications. Development of this correlation is based on the experimental data acquired from various sources in the literature. Using the developed correlation, moisture transfer parameters such as moisture diffusivity and moisture transfer coefficient for three regular shaped objects, e.g. slab, cylinder and sphere are calculated and compared with the experimental moisture content variations. The results showed an appreciably high agreement between the measured and predicted moisture content values from the correlation. Hence, the present correlation is considered as a useful tool for practical drying applications and a good contribution to the state-of-art of drying.  相似文献   

3.
This paper deals with the development of a new Biot number–drying coefficient (Bi–S) correlation. The developed correlation is used to determine the moisture transfer parameters in terms of moisture diffusivity and moisture transfer coefficient involved in the solids drying process. In the development of this correlation, a large number of experimental data taken from various sources in the literature are employed. In order to verify the validity of the present correlation, three sets of experimental moisture content variations for three different products such as potato, apple and yam are compared with the moisture profiles calculated using the correlations results and a good agreement is found. Thus, it is believed that the developed correlation will be helpful to design engineers and workers in the drying industries, in calculating the parameters affecting the drying process in a simple and accurate manner and optimizing the process. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Convective heat transfer coefficient is strongly influenced by the mechanism of flow during forced convection. In this paper, the effect of pipe roughness on friction factor and convective heat transfer in fully developed turbulent flow are briefly discussed. A correlation for the friction factor applicable in the region of transition to the fully developed turbulent flow regime is proposed. Using this relationship, some new approximation formulae are proposed to predict the convective heat transfer coefficients in the pipes with a relative roughness of ε/D⩽0.05. The effectiveness parameter for the heat transfer is investigated as a function of the pipe roughness, Reynolds number and Prandtl number. The effect of fouling is also briefly discussed. The predictions of the proposed correlations are compared with the experimental data and with some other previous correlations given in the literature.  相似文献   

5.
The present article deals with the numerical modeling of heat and moisture transfer during the drying process of a two-dimensional (2-D) rectangular object subjected to convective boundary conditions. As is common in solids drying, it is assumed that drying takes place as a simultaneous heat and moisture transfer whereby moisture is vaporized by means of a drying fluid (e.g., air), which passes over a moist object. The governing equations representing the drying process in a 2-D rectangular object are discretized using an explicit finite-difference approach, and a computer code is developed to predict the temperature and moisture distributions inside the object. Moreover, the results obtained from the present model are compared with the experimental data available in the literature, and considerably high agreement is found.  相似文献   

6.
A physical-empirical model is designed to describe heat transfer of helical coil in oil and glycerol/water solution. It includes an artificial neural network (ANN) model working with equations of continuity, momentum and energy in each flow. The discretized equations are coupled using an implicit step by step method. The natural convection heat transfer correlation based on ANN is developed and evaluated. This ANN considers Prandtl number, Rayleigh number, helical diameter and coils turns number as input parameters; and Nusselt number as output parameter. The best ANN model was obtained with four neurons in the hidden layer with good agreement (R > 0.98). Helical coil uses hot water for the inlet flow; heat transfer by conduction in the internal tube wall is also considered. The simulated outlet temperature is carried out and compared with the experimental database in steady-state. The numerical results for the simulations of the heat flux, for these 91 tests in steady-state, have a R ≥ 0.98 with regard to experimental results. One important outcome is that this ANN correlation is proposed to predict natural convection heat transfer coefficient from helical coil for both fluids: oil and glycerol/water solution, thus saving time and improving general system performance.  相似文献   

7.
In this study, the experimental results of the condensing heat transfer coefficients of R600a, a hydrocarbon refrigerant, in a horizontal smooth copper tube with an inner diameter of 4 mm and outer diameter of 6 mm are presented at different vapor quality and different mass fluxes during condensation under annular flow conditions, by adjusting the desired vapor qualities at the test area. A specially-designed sight glass has been fitted to the inlet and outlet of the test tube to identify the flow type by naked eye after the inlet vapor quality of the refrigerant to be fed to the test area during the test is adjusted in the system. Thanks to a new method developed in the measuring system, the condensing heat transfer coefficients could be calculated by measuring the difference value (Ts − Tw) directly from the data collection unit. The experimental findings have shown that the condensing heat transfer coefficients drops down with reduction in vapor quality and the coefficient rises with the increase in the mass flux at constant vapor quality. A correlation has been developed from the data obtained. The condensing heat transfer coefficients obtained from the experimental study were seen to be consistent by ± 20% with the correlations developed by Shah, Travis and Cavallini–Zecchin.  相似文献   

8.
Correlations for the laminar burning velocity of premixed CH4/H2/O2/N2 mixtures were developed using the method of High Dimensional Model Representation (HDMR). Based on experiment data over a wide range of conditions reported in the literature, two types of HDMR correlation (i.e. global and piecewise HDMR correlations) were obtained. The performance of these correlations was assessed through comparison with experimental results and the correlation reported in the literature. The laminar burning velocity predicted by the piecewise HDMR correlations was shown to agree very well with those from experiments. Therefore, the piecewise HDMR correlations can be used as an effective replacement for the full chemical mechanism when the prediction of the laminar burning velocity is needed in certain combustion modeling.  相似文献   

9.
Global heat transfer characteristics of submerged jet impingement boiling of a highly wetting dielectric fluid (FC-72) on a heated copper surface are presented. The effect of variation of the jet exit Reynolds number (Re) on boiling incipience, fully developed nucleate boiling, and critical heat flux (CHF) are documented. The jet exit Re is varied by variations of the jet exit velocity and the jet nozzle diameter for a fixed surface diameter. High-speed visualization is used to supplement trends observed in the heat transfer data. Scenarios of low and high incipience wall superheat are identified, corresponding to partially or fully developed nucleate boiling condition upon initiation of boiling. For the high incipience wall superheat scenario, the time of spread of boiling activity over the heated surface during temperature overshoot is found to be inversely proportional to the wall superheat temperature at boiling incipience. The incipient boiling wall superheat temperature is found to be uncorrelated with jet Re and jet diameter. A cumulative probability distribution function is used to characterize the onset of boiling with wall superheat temperature. At a fixed Re, CHF increases with increasing jet velocity and with decreasing jet diameter, indicating that the jet kinetic energy is a key parameter in CHF enhancement. The CHF data are compared with available jet impingement CHF correlations from literature on free surface and confined jets. The free surface jet CHF correlation by Monde and Katto (1978) [1] is seen to best capture the experimental data trends for Re greater than 4000.  相似文献   

10.
In this paper a two-dimensional numerical analysis of heat and moisture transfer during drying of a cylindrical object is presented. Drying is a process of simultaneous heat and moisture transfer whereby moisture is vaporized by means of a drying fluid (e.g., air), as it passes over a moist object. The two-dimensional analysis of heat and moisture transfer during drying of a cylindrical object is carried out using an explicit finite-difference approach. Temperature and moisture distributions inside the moist objects are obtained for different time periods and the results predicted from the present analysis are compared with two sets of experimental data available in the literature. A considerably high agreement is found between the predicted and measured values.  相似文献   

11.
Cuicui Wang  Huixiong Li 《传热工程》2014,35(6-8):685-692
A large number of studies have been carried out on the flow and heat transfer of supercritical pressure fluids in the past decades. However, there are still some uncertainties and deficiencies in the accurate prediction for supercritical fluid heat transfer coefficient due to the large and fast variations of fluids properties in the so-called pseudo-critical region. In this paper, 15 correlations were selected from the literature and were compared with each other to verify their capability in predicting heat transfer coefficient of supercritical pressure water in vertical tubes. Based on the comparison between the calculation results of the existing heat transfer correlations and the experimental data obtained from the open literature, it was found that the Swenson et al. correlation and the Hu correlation can reasonably predict the heat transfer coefficient of supercritical water in the pseudo-critical region. After evaluating these correlations, the authors conducted polynomial fitting for the collected experimental data and got a new correlation for heat transfer coefficient of water at supercritical pressures. The new correlation can fit well with the experimental data even in the neighborhood of pseudo-critical temperature.  相似文献   

12.
Computational results were obtained for turbulent flow and heat transfer in curved pipes, representative of helically coiled heat exchangers. Following a grid refinement study, grid independent predictions from alternative turbulence models (k?, SST kω and RSM–ω) were compared with DNS results and experimental pressure drop and heat transfer data. Using the SST kω and RSM–ω models, pressure drop results were in excellent agreement with literature data and the Ito correlation. For heat transfer, the literature is not comparably complete or accurate, but a satisfactory agreement was obtained in the range of available data. Unsatisfactory results, both for pressure drop and heat transfer, were given by the k? model with wall functions. Following the validation study, the RSM–ω model was used to compute friction coefficients and Nusselt numbers in the range Re = 1.4·104–8·104, Pr = 0.7–5.6 and δ (coil curvature) = 3·10?3–0.3. Power-law correlations were found unsuitable to fit the Re-, Pr- and δ-dependence of the Nusselt number, while the use of a properly formulated momentum-heat transfer analogy collapsed all results with high accuracy.  相似文献   

13.
This paper deals with the numerical and analytical modelling of two‐dimensional heat and moisture transfer during drying of a spherical object. Drying is considered to be a process of simultaneous heat and moisture transfer whereby moisture is vapourized by means of a drying fluid (e.g. air), as it passes over a moist object. Numerical modelling of two‐dimensional heat and moisture transfer during drying of a spherical object is carried out using an explicit finite‐difference approach. Temperature and moisture distributions inside the object are determined by using the developed computer code. Moreover, the results predicted from the present model are compared with the experimental data available in the literature and a considerably high agreement is found. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A dynamic model for evaluating the transient thermal and moisture transfer behavior in porous building materials was presented. Both heat and moisture transfer were simultaneously considered and their interactions were modeled. An analytical method has been proposed to calculate the coupled heat and moisture transfer process in building materials. The coupled system was first subjected to Laplace transformation, and then the equations were solved by introducing the Transfer Function Method. The transient temperature and moisture content distribution across the material can thus be easily obtained form the solutions. The results were compared with the experimental data and other analytical solutions available in the literature; a good agreement was obtained.  相似文献   

15.
The present study deals with developing a Correlation for heat transfer coefficient for flow between concentric helical coils. Existing Correlation is found to result in large discrepancies with the increase in gap between the concentric coils when compared with the experimental results. In the present study experimental data and CFD simulations using Fluent 6.3.26 are used to develop improved heat transfer coefficient correlation for the flue gas side of heat exchanger. Mathematical model is developed to analyze the data obtained from CFD and experimental results to account for the effects of different functional dependent variables such as gap between the concentric coil, tube diameter and coil diameter which affects the heat transfer. Optimization is done using Numerical Technique and it is found that the new correlation for heat transfer coefficient developed in this investigation provides an accurate fit to the experimental results within an error band of 3–4%.  相似文献   

16.
In this paper, an experimental test facility that permits continuous measurements of transient heat and moisture transfer in porous media is applied to study the vapor boundary layer in cellulose insulation. The experiment measures the relative humidity, temperature and moisture accumulation within the cellulose specimen with a fully developed flow of air at a controlled temperature and humidity provided above the surface. These experimental results are used to verify a mathematical model, which is used to develop an expression for moisture diffusivity (αm) that is analogous to thermal diffusivity, and takes into consideration moisture storage. The moisture diffusivity is used to calculate the vapor density in the boundary layer and the size of vapor boundary layer in cellulose insulation. It is found that the moisture storage effect has a very significant effect on the vapor boundary layer and cannot be ignored. For cellulose insulation, the size of the vapor boundary layer may be over predicted by a factor of ten when moisture storage is neglected.  相似文献   

17.
《Applied Thermal Engineering》2002,22(15):1763-1775
This paper deals with thermal modeling of the fluidized bed drying of wet particles to study heat and mass transfer aspects and drying thermal efficiencies. The model is then validated with the literature experimental data obtained for corn. A parametric investigation is undertaken to study the effects of the inlet air temperature, the air velocity and the initial moisture content of the material (i.e. corn) on the process thermal efficiency. The results show that the thermal efficiencies of the fluidized bed drying decrease sharply with decreasing moisture content of corn and hence increasing drying time, and apparently become the lowest at the end of the drying process. This clearly indicates that the moisture transfer from the material depends strongly on the air temperature, air velocity and the moisture content of material. A good agreement is obtained between the model predictions and the available experimental results.  相似文献   

18.
Use of porous baffles to enhance heat transfer in a rectangular channel   总被引:2,自引:0,他引:2  
An experimental investigation was carried out to measure module average heat transfer coefficients in uniformly heated rectangular channel with wall mounted porous baffles. Baffles were mounted alternatively on top and bottom of the walls. Heat transfer coefficients and pressure loss for periodically fully developed flow and heat transfer were obtained for different types of porous medium (10, 20, and 40 pores per inch (PPI)) with two window cut ratios (Bh/Dh=1/3 and 2/3) and two baffle thickness to channel hydraulic diameter ratios (Bt/Dh=1/3 and 1/12). Reynolds number (Re) was varied from 20,000 to 50,000. To compare the effect of foam metal baffle, the data for conventional solid-type baffle were obtained for (Bt/Dh=1/3). The maximum uncertainties associated with module Nusselt number and friction factor were 5.8% and 4.3% respectively. The experimental procedure was validated by comparing the data for the straight channel with no baffles (Bh/Dh=0) with those in the literature [Publications in Engineering, vol. 2, University of California, Berkeley, 1930, p. 443; Int. Chem. Eng. 16 (1976) 359]. The use of porous baffles resulted in heat transfer enhancement as high as 300% compared to heat transfer in straight channel with no baffles. However, the heat transfer enhancement per unit increase in pumping power was less than one for the range of parameters studied in this work. Correlation equations were developed for heat transfer enhancement ratio and heat transfer enhancement per unit increase in pumping power in terms of Reynolds number.  相似文献   

19.
Nanofluids are emerging as alternative fluids for heat transfer applications due to enhanced thermal properties. Several correlations are available in open literature for heat transfer coefficient (HTC) and thermophysical properties of nanofluids. Reliability of correlations that use effective properties for estimation of HTC needs to be checked. Comparison of experimental HTC and that estimated from existing correlations is the main objective of the present study. An empirical correlation is developed with experimental data of the HTC for zinc–water and zinc oxide–water nanofluids. Experimental HTC is compared with that estimated from developed correlation and existing correlations. The range of Re considered for the study is 4000 to 18,000. Comparison indicated large deviation in experimental values and the values estimated from existing correlations. Based on comparison results, it can be concluded that the single‐phase models of forced convective heat transfer cannot be extended to nanofluids.  相似文献   

20.
An experimental study on the saturated flow boiling heat transfer for a binary mixture of R290/R152a at various compositions is conducted at pressures ranging from 0.2 to 0.4 MPa. The heat transfer coefficients are experimentally measured over mass fluxes ranging from 74.1 to 146.5 kg/(m2·s) and heat fluxes ranging from 13.1 to 65.5 kW/m2. The influences of different parameters such as quality, saturation pressure, heat flux, and mass flux on the local heat transfer coefficient are discussed. Existing correlations are analyzed. The Gungor-Winterton correlation shows the best fit among experimental data for the two pure refrigerants. A modified correlation for the binary mixture is proposed based on the authors’ previous work on pool boiling heat transfer and the database obtained from this study. The result shows that the total mean deviation is 10.41% for R290/R152a mixtures, with 97.6% of the predictions falling within ±30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号