首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous production of murine GM-CSF by recombinant Saccharomyces cerevisiae in an airlift bioreactor was studied at three different dilution rates. The reactor was initially fed with a selective medium to increase cell concentration, and then was fed with a rich, nonselective medium for GM-CSF production. Ethanol was used as the main carbon source to provoke GM-CSF expression. In continuous culture, GM-CSF production was maintained for over 150 h, even though the fraction of plasmid-carrying cells continuously dropped to lower than 20%. The stable GM-CSF production during the later phase of the continuous culture was attributed to increased specific cell productivity possibly resulting from an increase in the plasmid copy number in plasmid-carrying cells. This also indicated the possibility of natural selection of high-copy number cells in continuous culture. Plasmid stability was found to be growth rate (dilution rate) dependent; it increased with the dilution rate. Reactor productivity and specific productivity also increased with the dilution rate. A two-parameter kinetic equation was used to model the plasmid stability kinetics. The growth rate ratio between plasmid-carrying and plasmid-free cells increased from 0.996 to 0.998 while the segregational instability or the probability of plasmid loss from each cell division increased from 1.1% to 16% as the dilution rate decreased from 0.11 h-1 to 0.05 h-1. Oscillation of the dilution rate between 0.05 h-1 and 0.11 h-1 stabilized the plasmids and gave a higher productivity than that achieved without oscillation.  相似文献   

2.
The alpha-amylase of Streptomyces sp. IMD 2679 was subject to catabolite repression. Four different growth rates were achieved when the organism was grown at 40 degrees C and 55 degrees C in the presence and absence of cobalt, with an inverse relationship between alpha-amylase production and growth rate. Highest alpha-amylase yields (520 units/ml) were obtained at the lowest growth rate (0.062 h-1), at 40 degrees C in the absence of cobalt, while at the highest growth rate (0.35 h-1), at 55 degrees C in the presence of cobalt, alpha-amylase production was decreased to 150 units/ml. As growth rate increased, the rate of specific utilisation of the carbon source maltose also increased, from 46 to 123 micrograms maltose (mg biomass)-1 h-1. The pattern and levels of alpha-glucosidase (the enzyme degrading maltose) detected intracellularly in each case, indicate that growth rate effectively controls the rate of feeding of glucose to the cell, and thus catabolite repression.  相似文献   

3.
Protein production with the recombinant yeast Saccharomyces cerevisiae in fed-batch culture is investigated in this work using beta-galactosidase as a model protein. Segregational instability was negligible during the observed culture periods. The final volumetric productivity, as determined by both cell concentration and gene expression, was strongly affected by the time course of the glucose levels in the bioreactor. It was found that an average glucose feed rate of 1.31 g glucose h-1 resulted in both the maximum beta-galactosidase production rate of 831-950 units ml-1 h-1 and the maximum cell production rate of 0.520-0.524 mg ml-1 h-1.  相似文献   

4.
Synthesis of two recombinant proteins (human glucagon and human growth hormone) was investigated in fed-batch cultures at high cell concentrations of recombinant Escherichia coli. The glucose-limited growth was achieved without accumulation of metabolic by-products and hence the cellular environment is presumed invariable during growth and recombinant protein synthesis. Via exponential feeding in the two-phase fed-batch operation, the specific cell growth rate was successfully controlled at the desired rates and the fed-batch mode employed is considered appropriate for examining the correlation between the specific growth rate and the efficiency of recombinant product formation in the recombinant E. coli strains. The two recombinant proteins were expressed as fusion proteins and the concentration in the culture broth was increased to 15 g fusion growth hormone 1(-1) and 7 g fusion glucagon 1(-1). The fusion growth hormone was initially expressed as soluble protein but seemed to be gradually aggregated into inclusion bodies as the expression level increased, whereas the synthesized fusion glucagon existed as a cytoplasmic soluble protein during the whole induction period. The stressful conditions of cultivation employed (i.e., high-cell-density cultivation at low growth rate) may induce the increased production of various host-derived chaperones and thereby enhance the folding efficiency of synthesized heterologous proteins. The synthesis of the recombinant fusion proteins was strongly growth-dependent and more efficient at a higher specific growth rate. The mechanism linking specific growth rate with recombinant protein productivity is likely to be related to the change in cellular ribosomal content.  相似文献   

5.
A wild-type mercury-resistant strain Pseudomonas aeruginosa PU21 (Rip64), and an Escherichia coli PWS1 strain genetically engineered to harbor mercury resistance were examined for their capacity to detoxify soluble mercuric ions with repeated fed-batch operations. The specific mercury detoxification activity for the two strains at different initial mercury concentrations was determined by resting-cell experiments. The fed-batch operations were conducted with different initial culture volumes (Vo), inoculum sizes (Xo), and different mercury feeding rates (FHg) to investigate the effects of those operation parameters on the performance of mercury detoxification. The results showed that the wild-type and the recombinant strains had an optimal specific activity of 5 x 10(-7) and 8 x 10(-8) micrograms cell-1 h-1, respectively. In fed-batch operation for P. aeruginosa PU21, under the conditions of Vo = 400 ml and Xo = 4.5-4.8 x 10(9) cells ml-1 the overall mercury detoxification efficiency (eta) for FHg = 16.9 mg Hg h-1 was 5.26 mg Hg l-1 h-1, nearly 35% higher than that for a lower FHg (11.7 mg Hg h-1). Among the three initial culture volumes examined in this study, the highest eta (5.60 mg Hg l-1 h-1) was obtained when Vo = 1200 ml and FHg = 16.9 mg Hg h-1. It was also found that an inoculum size higher than 4.0 x 10(9) cells ml-1 enabled a stable fed-batch operation, while as the inoculum was reduced to around 1.6 x 10(9) cells ml-1, the mercury feeding caused severe cell death, leading to an unsuccessful fed-batch operation. In the fed-batch operation for E. coli PWS1 strain with Vo = 1200 ml and FHg = 16.9 mg Hg h-1, the mercury detoxification efficiency was 3.07 mg Hg l-1 h-1, only 54% of that for the wild-type P. aeruginosa PU21 strain under the same operating conditions. It was also noticed that the operation with E. coli PWS1 became less efficient at the second fed-batch cycle due to plasmid instability of the recombinant strain.  相似文献   

6.
The specific growth rate is a key control parameter in the industrial production of baker's yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h-1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol . g of biomass-1 . h-1 at D = 0.40 h-1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h-1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol . g of dry yeast biomass-1 . h-1 at D = 0.025 h-1 to 20.5 mmol of ethanol . g of dry yeast biomass-1 . h-1 at D = 0.28 h-1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol . g of dry yeast biomass-1 . h-1 at D = 0.40 h-1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

7.
An efficient sporulation/immobilization procedure for immobilized fungal cell culture was developed by modifying an existing immobilized technique to shorten the time and number of steps for sporulation. This method was applied to an immobilized-cell perfusion bioprocess (IPB) for continuous production of CyA, an intracellular secondary metabolite produced by a filamentous fungus, Tolypocladium inflatum. In the IPB, the fungal cells were immobilized in the pores of celite beads (100-500 microm) and a top-driven stirred tank fermentor was used for the culture. The IPB showed good process benefits as demonstrated by the high density of immobilized cells continuously producing CyA-containing free cells. The productivity of cyA-containing free cells in the effluent was very high, ca. 1.0g/(L/h) at a dilution rate of 0.1 h-1, due to the high density of immobilized cells in the fermentor. The CyA productivity was 4.0-6.0 mg/(L/h) which was about 6-10-fold higher than that of batch suspended cell culture. Such an efficient IPB was possible since a decantor was developed in this study, which could effectively separate cell-immobilized beads from the effluent although bead loss slightly increased as the cell loading increased in the latter part of culture. Furthermore, long-term operation of IPB was carried out successfully by employing an in-situ immobilization strategy. It was found that a large number of spores in the fermentation broth in the reactor were entrapped in-situ into the newly supplemented celite beads and then germinated, thus forming new immobilized cells.  相似文献   

8.
We constructed two mouse alpha-amylase secretion vectors for Kluyveromyces lactis using the well-characterized signal sequence of the pGKL 128 kDa killer precursor protein. Both PHO5 and PGK expression cassettes from Saccharomyces cerevisiae directed the expression of mouse alpha-amylase in YPD medium at a similar level of efficiency. K. lactis transformants secreted glycosylated and non-glycosylated alpha-amylase into the culture medium and both species were enzymatically active. The K. lactis/S. cerevisiae shuttle secretion vector pMI6 was constructed, and K. lactis MD2/1(pMI6) secreted about four-fold more alpha-amylase than S. cerevisiae YNN27 harboring the same plasmid, indicating that K. lactis is an efficient host cell for the secretion and production of recombinant proteins.  相似文献   

9.
A dynamic model of glucose overflow metabolism in batch and fed-batch cultivations of Escherichia coli W3110 under fully aerobic conditions is presented. Simulation based on the model describes cell growth, respiration, and acetate formation as well as acetate reconsumption during batch cultures, the transition of batch to fed-batch culture, and fed-batch cultures. E. coli excreted acetate only when specific glucose uptake exceeded a critical rate corresponding to a maximum respiration rate. In batch cultures where the glucose uptake was unlimited, the overflow acetate made up to 9. 0 +/- 1.0% carbon/carbon of the glucose consumed. The applicability of the model to dynamic situations was tested by challenging the model with glucose and acetate pulses added during the fed-batch part of the cultures. In the presence of a glucose feed, E. coli utilized acetate 3 times faster than in the absence of glucose. The cells showed no significant difference in maximum specific uptake rate of endogenous acetate produced by glucose overflow and exogenous acetate added to the culture, the value being 0.12-0.18 g g-1 h-1 during the entire fed-batch culture period. Acetate inhibited the specific growth rate according to a noncompetitive model, with the inhibition constant (ki) being 9 g of acetate/L. This was due to the reduced rate of glucose uptake rather than the reduced yield of biomass.  相似文献   

10.
Heat measurements have been successfully as an analytical tool for the study of the dynamics of energy metabolism of Saccharomyces cerevisiae and Candida utilis grown in continuous culture under fluctuating substrate supply. A low average dilution rate (D = 0.05 h-1) was maintained either by adding the medium as continuously (dropwise) as possible or (blockwise) by adding the medium at high speed during a short period (D = 0.5 h-1 for 40 s) and not at all during the following period (D = 0.00 h-1 for 360 s). The resulting biological activity was monitored on-line with conventional (O2 and CO2) off-gas analyses, DOT measurements, and heat flux measurements. In C. utilis cultures, the biomass-specific maximum oxygen consumption rate (qO2,max), the biomass yield (Ys,x), and the dynamic responses to a glucose pulse and to a change in feeding regime were not significantly affected by different preceding feeding regimes. In contrast, S. cerevisiae grown in continuous culture with blockwise feed showed a 50% increase in qO2,max and a 25% drop in Ys,x compared to the culture grown with dropwise feed. The dynamic response to a glucose pulse (0.6 g L-1) was slower for the continuous (dropwise) than for the blockwise grown S. cerevisiae. With a second testing method for the dynamic response of the yeasts, the feeding regime was changed. The blockwise fed S. cerevisiae proved to be better "trained" to cope with sudden changes in glucose supply and, therefore, was more "shockproof" toward a change in feeding regime. This clearly points to major differences in the intracellular metabolic flux control between the yeasts. These findings are of relevance for industrial baker's yeast production, where reactor mixing times of one to several minutes are not uncommon. The observed, heat production, together with the dissolved oxygen concentration, appeared to give the fastest response to actual changes in the culture. It is suggested that heat measurements can be a very useful tool to monitor and control the growth of S. cerevisiae in laboratory and industrial fermenter operations.  相似文献   

11.
Interesting challenges from metabolically engineered Saccharomyces cerevisiae cells arise from the opportunity to obtain yeast strains useful for the production of chemicals. In this paper, we show that engineered yeast cells deficient in the triose phosphate isomerase activity are able to produce glycerol without the use of steering agents. High yields of conversion of glucose into glycerol (80-90% of the theoretical yield) and productivity (1.5 g L-1 h-1) have been obtained by a bioconversion process carried out in a poor and clean medium. We obtained indications that the growth phase at which the biomass was collected affect the process. The best results were obtained using cells collected at the end of exponential phase of growth. In perspective, the strategies and the information about the physiology of the cells described here could be useful for the developing of new biotechnological processes for glycerol production, outflanking the problems related to the use of high level of steering agents.  相似文献   

12.
在成功筛选出一株高产乳酸的乳酸菌USTB-08基础上,分别采用批量和补料发酵培养,通过改变碳源、氮源、碳氮比、温度和pH值等研究了乳酸菌USTB-08生长和产乳酸的优化控制条件.采用蔗糖和酵母膏作为唯一碳源和氮源(碳氮质量比为5:1)、温度35℃、接种量1.0%及初始pH 6.50是提高乳酸菌生长的优化参数.进一步在50L全自控发酵罐中,采用质量分数为10%氢氧化钠和25%蔗糖混合溶液作为控制pH值和碳源补料的流加液,在pH 6.00~7.00范围内,恒定控制pH 6.50获得了最大的乳酸菌生物量(OD680nm 13.2),而恒定控制pH 7.00则获得了最高的乳酸含量(28.0 g·L-1).本研究首次采用控制pH值与流加蔗糖同步进行的培养方式,获得了高细胞浓度的乳酸菌和高质量浓度的乳酸.   相似文献   

13.
This study reports the establishment of alpha-amylase-producing human parotid pleomorphic adenoma cell lines (2HP and 2HP1) which have been maintained in culture for over 1 yr. The procedures required preparation of cellular clumps from tumor tissue and plating them on plasma clot or precoated dishes. During the initial phase of growth they required modified MCDB-153 medium without serum. When cells showed signs of degeneration they were changed to MCDB-153 medium containing first 2% and then 10% heat inactivated fetal bovine serum. Although cells grew well in MCDB-153 containing 10% serum, the epithelial cell morphology was not distinct. Therefore, the growth and morphology of cells grown in MCDB-10% serum were compared with those in RPMI growth medium containing 10% fetal bovine serum and F12 containing 10% agammaglobulin newborn bovine serum. Although the growth of cells was a little slower in F12 medium than those in MCDB and RPMI, the epithelial cell morphology was maintained better than in other growth media. The cells of 2HP and 2HP1 produce low levels of alpha-amylase and relatively high levels of alpha-amylase mRNAs of 1176 and 702 bp and contain neurofilament-160, a neuronal-specific marker. The cells of 2HP1 are tumorigenic when tested in athymic mice, but the cells of 2HP are not. The establishment of amylase-producing human parotid adenoma cell lines of different characteristics in culture provides a new opportunity to study the mechanisms of differentiation and transformation, and regulation of alpha-amylase in these cells.  相似文献   

14.
15.
The measurement of the colony radial growth rate (Kr) on solid medium of colonies of Sclerotium rolfsii Proimi F-6656 for the evaluation of scleroglucan production medium and other different media, incubation temperature and tolerance to diverse concentrations of sucrose and NaCl were studied. The optimum growth temperature observed was 30 degrees C. The Kr value reached on the Production Medium used (0.66 mm.h-1) showed no differences compared with those of the other media tested, indicating that all the requirements for growth were provided. Poor growth was only observed on Soil Extract Agar. The fungus tolerated concentrations of sucrose from 0.15 to 1.17 M, on both Czapek and production medium. Growth was limited by the highest concentrations of sucrose tested (0.88 and 1.17 M), as indicated by a slower increase in colony size. Addition of 0.86 M NaCl to the production medium and YM agar did not inhibit growth completely, but decreased the radial growth rate considerably (80 and 70% respectively).  相似文献   

16.
The influence of several parameters on the fermentative production of nisin Z by Lactococcus lactis IO-1 was studied. Considerable attention has been focused on the relationship between the primary metabolite production of bacteriocin and lactate and cell growth, which has so far not been clarified in detail. Production of nisin Z was optimal at 30 degrees C and in the pH range 5.0-5.5. The addition of Ca2+ to the medium showed a stimulating effect on the production of nisin Z. A maximum activity of 3150 IU/ml was obtained during pH-controlled batch fermentation in the medium supplemented with 0.1 M CaCl2. It was about three times higher than that obtained under the optimal conditions for cell growth and lactic acid production.  相似文献   

17.
The metabolic and energetic properties of Leuconostoc mesenteroides have been examined with the goal of better understanding the parameters which affect dextransucrase activity and hence allowing the development of strategies for improved dextransucrase production. Glucose and fructose support equivalent specific growth rates (0.6 h-1) under aerobic conditions, but glucose leads to a better biomass yield in anaerobiosis. Both sugars are phosphorylated by specific hexokinases and catabolized through the heterofermentative phosphoketolase pathway. During sucrose-grown cultures, a large fraction of sucrose is converted outside the cell by dextransucrase into dextran and fructose and does not support growth. The other fraction enters the cell, where it is phosphorylated by an inducible sucrose phosphorylase and converted to glucose-6-phosphate (G-6-P) by a constitutive phosphoglucomutase and to heterofermentative products (lactate, acetate, and ethanol). Sucrose supports a higher growth rate (0.98 h-1) than the monosaccharides. When fructose is not consumed simultaneously with G-1-P, the biomass yield relative to ATP is high (16.8 mol of ATP.mol of sucrose-1), and dextransucrase production is directly proportional to growth. However, when the fructose moiety is used, a sink of energy is observed, and dextransucrase production is no longer correlated with growth. As a consequence, fructose catabolism must be avoided to improve the amount of dextransucrase synthesized.  相似文献   

18.
Implications of conventional activated sludge (CAS) process modification to a low sludge production (LSP) process have been studied for treating pulp and paper wastewaters. The activated sludge process is modified to a two-stage design to establish a microbial food chain that would result in reduced sludge production. The return activated sludge in the LSP process bypasses the first (dispersed growth) stage to be received only by the second (predatory) stage. The resulting once-through operation of the dispersed growth (DG) stage makes it potentially susceptible to bacterial washout under hydraulic shock conditions. A sensitivity analysis of the DG stage operation was performed by varying its hydraulic residence time. The experimental data revealed that the optimal DG stage hydraulic residence is between 3 and 5?h, with bacterial washout likely to be initiated within 2?h. Based on laboratory results, it appears that a well-designed LSP system is likely to be able to handle day-to-day variations in hydraulic and organic loading rates. The LSP process produced 36% less sludge than the CAS process while consuming approximately 25% more oxygen. The treatment performance of the two systems was comparable except that the LSP sludge had much better settling and dewatering properties.  相似文献   

19.
Even though secretion offers numerous advantages for the production of proteins in Escherichia coli, the expression of many heterologous proteins is severely limited by degradation in the periplasmic space. We found that mutations in rpoH, the RNA polymerase sigma factor responsible for heat shock protein synthesis, affect the stability of heterologous secreted proteins. A particularly dramatic increase in expression was further observed in rpoH degP double mutants. To minimize proteolytic degradation, we constructed a family of 25 isogenic strains deficient in all known cell envelope proteases (DegP, Protease III, Tsp(Prc), and OmpT), as well as the rpoH15 mutant allele, and characterized their growth in both shake flasks and fermentors. The availability of this set of strains permits the selection of a suitable host based on the optimal combination between the optimum reduction in protease activity and acceptable growth properties.  相似文献   

20.
Suppression of proliferation of cells which contain stable or stabilized mRNA coded for a protein to be produced, a partial mimic of cell differentiation, was examined for enhancing protein production by cultured mammalian cells. Hybridoma 2E3 cells which were adapted to be interleukin-6 sensitivity growth-suppressed accumulated the mRNA of IgG1 which is reported stable, and IgG1 production rate increased as a result when their growth was suppressed with interleukin-6. A myeloma cell line was similarly adapted; the obtained myeloma cells can be used as host cells for enhancing production of exogenous proteins by suppressing growth with interleukin-6. Temperature-sensitively growth-suppressible mutants of mouse mammary carcinoma FM3A were transfected with cDNA of IgM lambda 1 chain and cultured at nonpermissive temperature to enhance production of lambda 1. Addition of various growth-suppressive reagents to culture medium was studied for finding methods suitable for suppressing growth while maintaining high cell viability. Caffeine yielded the best results among these reagents. Deprivation of various growth-supporting components in culture medium was also tested; simultaneous deprivation of insulin and transferrin viably suppressed growth of hybridoma 2E3 cells, resulting in enhanced antibody productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号