首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
X射线荧光光谱无标定量测定稀土矿石中五氧化二磷   总被引:1,自引:0,他引:1       下载免费PDF全文
利用粉末压片法制备样品,通过在Omnian无标定量分析软件中添加与待测组分相似样品来建立标签,可校正粉末样品可能存在的矿物效应、颗粒效应及制样引进的误差,从而实现X射线荧光光谱法(XRF)对稀土矿物中P2O5的准确测定。通过试验确定了压片制样的最佳制样条件为:样品粒度小于0.074mm、压力为40t、称样量为6.00g和保压时间为30s。对含不同梯度含量P2O5的稀土矿石进行正确度考察,发现以Omnian软件未添加标签而直接测定的P2O5结果差值较大,而Omnian添加标签的分析结果与国家标准方法的分析结果基本吻合;精密度试验表明,P2O5测定结果的相对标准偏差(RSD,n=8)小于3%。无需大量的标样建立校准曲线,能满足稀土矿石含磷量的精确分析要求。  相似文献   

2.
当今X射线荧光光谱(XRF)已成为锰矿石分析最重要的方法之一.作者收集了截至2020年我国X射线荧光光谱技术分析锰矿石的文献共计29篇,其中25篇采用熔融制样方法,4篇采用粉末压片制样方法.文章介绍了我国锰矿分析的文献概况和基础条件:包括相关专著、评述论文、标准物质和方法标准.对29篇期刊文献用列表方式简介了方法要点,...  相似文献   

3.
X射线荧光光谱(XRF)在岩石分析中的应用是其在地质材料领域分析应用的基础。文章以硼酸盐熔融制样、高精密度全自动化现代XRF仪器及软件和基体效应数学校正等为主的现代XRF理论与技术方法的引入、消化、研发及应用,多种标准物质系列的形成与实际应用研究工作,直接压片法岩石多元素精确分析的研究与应用和用能量色散X射线荧光光谱(EDXRF)进行岩石主次组分准确分析的探索等方面较全面地评介了XRF分析技术在我国岩石分析中应用的历史发展和已取得的重要成果。最后评介了这些成果的历史和现实意义:XRF作为一种快速、准确、高自动化的现代仪器分析方法已基本"替代"了传统的化学方法中主、次、痕量元素的分析,而成为当今地质材料多元素分析的主导方法。文章特别强调了在超细标准物质研制与超细样品制备方面的研究工作以及该项研究的意义和可能的深远影响,美国国家标准与技术研究院(NIST)在这方面的研究工作标志着这将是地质分析技术研究的一个新的研究方向。引文161篇。  相似文献   

4.
芦飞 《冶金分析》2014,34(7):69-73
采用铣床制样,建立了X射线荧光光谱法(XRF)测定不锈钢中硅、锰、磷、硫、铬、镍、铜、钼、钒、钛、铌、钴元素的分析方法。通过对铣床和磨样机处理样品表面的分析,确定了铣床制备样品表面的最佳参数。对X射线荧光分析仪基本分析条件优化后,绘制了不锈钢样品中碳、硅、锰、磷、硫、铬、镍、铜、铝、钼、钒、钛、铌、钴、钨、钙、砷、锡、铅、锑和铁21个元素的回归曲线,对其中磷、硫、铬、镍、铜和钴元素进行干扰校正后,得到了较为理想的结果。比较了实验方法与火花源原子发射光谱法分析不锈钢中铬和镍元素的精密度,结果表明,实验方法的分析精密度较好。对精密度进行了验证,硅、锰、磷、硫、铬、镍、铜、钼、钒、钴元素的相对标准偏差(n=11)在0.08%~3.8%之间;对不锈钢标准样品进行分析,实验方法的分析结果与湿法或火花源原子发射光谱的测定值吻合较好。  相似文献   

5.
以Li2B4O7作熔剂,采用熔片法制样,建立了不锈钢渣样中SiO2、CaO、MgO、Al2O3、TiO2、P2O5、MnO、Fe2O3、Cr2O3的X射线荧光光谱分析方法,本方法采用国家标准样品及人工合成标准样品绘制了工作曲线,进行了精密度和准确度试验,其测定值与化学验证值相符,并有良好的精密度,完全满足生产检验要求。  相似文献   

6.
当今X射线荧光光谱(XRF)已成为碳酸盐类矿石分析最重要的方法之一。作者收集了截至2021年我国X射线荧光光谱技术分析碳酸盐类矿石的期刊文献共计73篇,其中41篇采用熔融制样方法,36篇采用粉末压片制样方法。文章介绍了我国碳酸盐类矿石分析的文献概况和基础条件:包括相关文献、评述论文、标准物质和标准方法。对73篇期刊文献用列表方式简介了方法要点,包括:仪器、制样方法、校准和校正、测定组分、精密度等。并对其中较典型、有代表性的文献按制样方法进行了重点评介,强调了熔融制样虽然可以有效解决样品粒度和矿物效应的影响,但发展粉末压片制样依然具有独特优势和社会发展需求。最后讨论了XRF分析地质材料时的制样方法选取、样品粒度影响和碳酸盐类矿石的X射线荧光光谱分析方法的未来发展趋势等问题。全篇引文87篇。  相似文献   

7.
环境土壤中组成复杂,为了能够同时检测土壤中主次组分,建立了熔融制样-X射线荧光光谱法(XRF)测定环境土壤中主次组分的方法。为了防止腐蚀铂-金坩埚,实验先对环境土壤样品进行预氧化,即在800℃马弗炉灼烧2 h;再以四硼酸锂-偏硼酸锂混合熔剂(m(Li2B4O7)∶m(LiBO2)=67∶33)作为熔剂,确定稀释比为10∶1,以溴化锂为脱模剂,在1 050℃熔融10 min,制得玻璃熔片。选择土壤系列套标绘制校准曲线,并采用经典系数法对校准曲线进行校正,建立环境土壤中SiO2、TiO2、Al2O3、Fe2O3、Mn3O4、MgO、CaO、Na2O、K2O、P2O5、SO3、V2O5  相似文献   

8.
张祥  陆晓明  张毅  何伟 《冶金分析》2021,41(7):40-46
采用X射线荧光光谱法(XRF)分析铝合金样品时,某些合金元素因含量变化、热处理工艺不同,形成不同的金相组织,在微观上分布不均,基体效应难以有效校正,导致校准曲线难以建立。实验采用熔融法把屑样铝合金制备成玻璃片,消除了基体干扰;选用高铝耐材标准样品,并配以高纯氧化物、标准溶液制备了系列校准样品,建立了XRF分析铝合金中铝、硅、镁、铁、钛、锰、铜、锌8种组分的方法。试验确定了最佳制样条件:以8.000 0 g四硼酸锂熔融挂壁作为坩埚保护层,称取0.200 0 g铝合金、2.000 0 g碳酸锂,混匀。将坩埚移入电炉中,预氧化初始温度为600 ℃,升温至700 ℃,保持120 min,缓慢升温至800 ℃;取出冷却,加入约0.045 g溴化氨,移入熔融炉内,1 100 ℃下摇摆熔融30 min,制得均一的玻璃片。考察了方法的检出限,镁为0.066%,硅为0.007 1%,其余元素低于硅的检出限;实验方法用于测定铝合金屑样,结果的相对标准偏差(RSD,n = 9)为0.31%~11%;实验方法测定6个标准样品,测定值与标准值相一致。  相似文献   

9.
实验采用熔融法制样,以X射线荧光光谱法(XRF)实现了菱镁矿中MgO、Al2O3、SiO2、P2O5、CaO、TiO2、MnO、Fe2O3主次量组分的测定。选择白云岩、水镁石和石灰石国家一级标准物质及人工合成校准样品绘制校准曲线解决了高含量MgO和低含量CaO的测定问题。先测量样品灼烧减量,用灼烧后的样品进行熔片,以消去灼烧减量的含量与X射线荧光强度建立校准曲线,并进行基体校正,测出未知样灼烧后的含量后,再换算为样品实际含量。灼烧后样品与熔剂Li2B4O7的稀释比为1∶10,加入1滴LiBr溶液(1.0 g/mL)作为脱模剂,在1 050 ℃熔融9 min制备熔片。各组分校准曲线的相关系数在0.997 6~0.999 9之间;方法检出限在10~320 μg/g之间。对一菱镁矿实际样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=12)在0.25%~3.6%之间。所建方法应用于菱镁矿标准物质和实际样品的测定,结果与标准物质认定值或实际样品湿法值基本一致。  相似文献   

10.
采用玻璃片熔融方法制样,建立了X射线荧光光谱(XRF)分析不锈钢渣中氧化铝、二氧化硅、氧化钙、氧化镁、三氧化二铁、氧化锰、三氧化二铬、二氧化钛、氧化镍和五氧化二磷的快速检测方法。以四硼酸锂-偏硼酸锂(质量比1∶1)为熔剂,稀释比1∶24,在1 100 ℃下,静置5 min,摇摆20 min熔融,制得均匀不锈钢渣玻璃片。选用炉渣标准样品、三氧化二铬高纯试剂及镍标准溶液合成系列不锈钢渣校准样品,经X射线荧光光谱仪测定并绘制校准曲线,采用谱线重叠干扰校正系数和基体效应校正系数有效地消除了光谱干扰和基体效应。采用高纯氧化物和标准溶液配制不锈钢渣合成样品,采用实验方法对合成样品及生产样品进行分析,测定值与参考值或湿法测定值一致;精密度试验结果显示,各组分测定结果的相对标准偏差(RSD, n=9)为0.34%~9.4%。  相似文献   

11.
目前行业内普遍存在的问题是低钛含量的钛铁合金比较容易氧化,高钛含量的钛铁合金如70钛铁在熔片过程中难氧化,铂-金坩埚腐蚀情况较严重,所用氧化剂往往很难兼顾到氧化能力和迸溅控制水平。经试验,将硝酸钾、硼酸和无水碳酸钠按1∶1∶4的质量比配制,能完全氧化高钛含量的钛铁合金,同时可有效避免迸溅损失。选择7 g四硼酸锂粉末铺底,采用2 g四硼酸锂-偏硼酸锂-氟化锂混合熔剂(mmm=65∶25∶10)覆盖样品和氧化剂,可避免铂-金坩埚被腐蚀,进而实现了X射线荧光光谱法(XRF)对钛铁合金中钛、硅、锰、铝、磷和铜等主量元素的测定。低含量锰、磷和铜的检出限依次为31.2、16.8、25.5 μg/g。精密度考察结果表明,各元素测定结果的相对标准偏差(RSD)均不大于3.0%。采用实验方法对钛铁合金标准样品和实际样品进行测试,结果与认定值或化学湿法值一致。  相似文献   

12.
压片制样-X射线荧光光谱法测定高磷钢渣组分   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了粉末压片制样-X荧光光谱法测定炼钢转炉高磷渣中TFe、SiO2、CaO、MgO、Al2O3、MnO、P2O5、TiO2和V2O59种主要组分的方法, 探讨了样品保存方式对氧化钙测定结果的影响。实验表明选择用密封袋保存样品压片可以克服其在放置中氧化钙测定结果的偏低问题。通过选择压片制样的最佳条件减少矿物效应和粒度效应对分析结果造成的偏差, 利用经验系数法进行基体效应、谱线重叠干扰和基体干扰的校正, 实际样品的9种主要组分能被分析。本法的分析结果与电感耦合等离子体原子发射光谱法(ICP-AES)或化学分析法分析结果一致, 相对标准偏差均小于2%。本法可用于炼钢双渣脱磷工艺化学成分的快速监控。  相似文献   

13.
刘伟  王珺 《冶金分析》2011,31(5):27-30
采用玻璃熔片法制样,以人工合成样品制作校准曲线,建立了不锈钢除尘灰中Fe、Cr和Ni的X射线荧光光谱分析方法。对样品熔片的制备和分析结果的可靠性进行考察。结果表明,采用铂-黄坩埚(w(Pt)∶w(Au)=95%∶5%)熔样,以硝酸铵和过氧化钠作氧化剂,溴化铵作脱模剂,四硼酸锂作熔剂并控制稀释比为1∶30,按照四硼酸锂、硝酸铵、试样、过氧化钠、四硼酸锂的顺序将它们平铺在坩埚中,然后在600 ℃下熔融10 min,取出后加入溴化铵,再在熔融机中熔融15 min,则得到表面光洁、无可见晶斑的玻璃熔片,并且坩埚不被腐蚀。用本文拟定的测定条件对熔片中的铁、铬、镍进行X射线荧光光谱法测定并进行结果对照,表明本法测得值与湿法测定值一致,铁、铬、镍测定结果的相对标准偏差分别为0.30%、0.87%、1.4%。  相似文献   

14.
在圆珠笔笔头最顶端的地方,材料厚度仅有0.3~0.4mm,需要极高的加工精度,对不锈钢原材料(易切削钢)提出了极高的性能要求。易切削钢是指在钢中加入一定量的S、P、Pb、Te等易切削元素,以改善其切削性的合金钢,钢中微量元素的准确分析直接影响到该钢种的冶炼成功与否。研究发现桶样分析稳定性更优于球拍样,因此实验采用铣床对桶样进行制样,刀头旋转速度为300r/min、进刀速度为250mm/min。通过对X射线荧光光谱仪晶体、2θ角和脉冲高度等基本分析条件优化后,使用标样绘制了易切削不锈钢样品中Pb、Te、Bi的回归曲线,回归精度(SEE)分别为0.0034、0.0027、0.0046,实现了X射线荧光光谱法(XRF)对易切削不锈钢中Pb、Te、Bi含量的测定。Pb、Te、Bi的检出限分别为0.0009%、0.0012%、0.0006%。用实验方法测定生产样品(编号3125)中Pb、Te和Bi含量,测定结果的相对标准偏差(RSD,n=11)均不大于1.1%;对易切削钢生产样品进行正确度分析,分析结果与化学湿法、火花放电原子发射光谱法一致性较好。  相似文献   

15.
针对铬矿主次组分同时测定中存在的问题,建立了熔融制样-X射线荧光光谱法同时测定铬矿中Cr_2O_3、Fe、MgO、SiO_2、Al_2O_3、CaO、P、S、K_2O、Ni、Co、Ti、Mn、V等14种主次组分的分析方法。以Li_2B_4O_7-LiBO_2(m∶m=67∶33)为熔剂,稀释比1∶20,定量加入氧化-脱模混合溶液(500g/L NaNO_3溶液-70g/L LiBr溶液),在700℃预氧化5min,在1100℃熔融20min,制得透明的熔片。使用铬矿标准物质与钒钛铁精矿标准物质,光谱纯试剂氧化镍按不同比例混合制备合成校准样品系列,拓展了校准曲线含量范围。方法的检出限为10~748μg/g。采用理论α系数法和经验系数法相结合的方法校正基体效应。对1个铬矿样品进行精密度考察,测定结果的相对标准偏差(RSD,n=12)均小于5%;采用实验方法对1个铬矿标准物质进行分析,测定结果与认定值相符,能满足铬矿中各成分的检测要求。  相似文献   

16.
芦飞  王瑛 《冶金分析》2015,35(7):67-72
由于不锈钢标渣在市场上很难购买,且熔融制样-X射线荧光光谱(XRF)无法满足炉前不锈钢渣样的快速分析要求,实验利用转炉渣、高炉渣、平炉渣等标准样品和文献方法定值的不锈钢渣生产样品,建立熔融制样-X射线荧光光谱的校准曲线,并用于不锈钢渣样的定值分析,将此定值分析结果用于压片制样-X射线荧光光谱校准曲线的绘制,从而实现不锈钢渣中CaO、SiO2、Al2O3、MnO、MgO、TFe、P2O5、TiO2、Cr2O3和NiO的炉前快速分析。对熔融制样的条件及方法的精密度和准确度均进行了考察,保证了绘制校准曲线用不锈钢渣测定结果的准确性。通过试验确定压片制样-X射线荧光光谱的分析条件为:研磨时间50 s;40 g试样中添加5粒粘合剂;100 kN压力,保压时间15 s进行压片。各组分校准曲线的相关系数均大于0.999。对同一不锈钢渣进行压片制样-XRF的精密度考察,各组分测定结果的相对标准偏差为0.43%~4.6%;准确度验证结果表明,压片制样的测定结果同熔融制样的测定结果一致,但压片制样XRF满足炉前不锈钢渣分析量大、分析速度快的要求。  相似文献   

17.
李勇  顾强  刘洪艳 《冶金分析》2022,42(8):29-34
萤石广泛应用于钢铁工业,作为炼铁、炼钢的助剂,对萤石质量进行评价的主要指标是氟化钙和二氧化硅的含量。采用熔融制样-X射线荧光光谱法(XRF)测定萤石中氟化钙常采用氟谱线法和钙谱线法两种方法,若采用氟谱线法测定,会因无法消除萤石可能含有的氟化镁干扰,存在测定结果偏高的问题;若采用钙谱线测定,因测定得到的是钙的总量,还需再减去碳酸钙中钙量,方法较为繁琐。依据萤石中的碳酸钙可被稀乙酸溶解而氟化钙和二氧化硅不会被溶解的原理,采用10%(V/V)乙酸溶解样品后过滤,保留滤渣,实现了对样品中碳酸钙的分离。将残渣和滤纸灰化,将其与四硼酸锂-偏硼酸锂-氟化锂混合熔剂(mmm=65∶25∶10)、溴化钾混合熔融制成玻璃样片,实现了X射线荧光光谱法对萤石中氟化钙和二氧化硅测定。实验结果表明,氟化钙和二氧化硅校准曲线的线性相关系数达到0.997以上,方法中二氧化硅的检出限为0.089%。对萤石样品进行精密度考察,氟化钙和二氧化硅测定结果的相对标准偏差(RSD,n=12)分别不大于0.12%和0.92%。按照实验方法测定萤石标准样品和实际样品,标准样品中氟化钙和二氧化硅的测定值与标准值一致;实际样品中氟化钙的测定值与标准方法GB/T 5195.1—2017中EDTA滴定法测定值一致性较好,二氧化硅测定值与标准方法GB/T 5195.8—2017中硅钼蓝分光光度法测定值一致性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号