首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
木质纤维素水解制取燃料乙醇研究进展   总被引:1,自引:1,他引:0  
《化工进展》2009,28(11)
以木质纤维素生产燃料乙醇具有原料可再生性和环境友好的优点而备受重视.本文介绍了国内外木质纤维素制取燃料乙醇中的水解工艺过程,包括浓酸水解、稀酸水解和酶水解工艺,分析了各工艺的技术特点,同时指出稀酸预处理-酶水解工艺将成为近几年国内外研究和开发的重点.  相似文献   

2.
预处理是利用生物质原料制备燃料乙醇的工艺过程中至关重要的一步。以电解水为介质对玉米秸秆和柳枝稷进行预处理,考察了不同预处理条件对这两种生物质酶催化水解性能的影响。玉米秸秆预处理试验条件为:165、180和195℃;10、20和30 min。柳枝稷预处理试验条件为:170、185和200℃;5、15和25 min。结果表明,电解水预处理法针对不同的生物质有较好的处理效果,在玉米秸秆和柳枝稷的试验中,分别获得了83%和67%的纤维素转化率。同时,电解水预处理过程中,木糖只有在较高温度(195℃和200℃)时,才发生明显的降解。HPLC检测表明预处理过程中生成的发酵抑制物较少。  相似文献   

3.
Catalytic conversion (hydrolysis) of carbohydrate polymers present in the lignocellulosic biomass into fermentable sugars is a key step in the production of bioethanol. Although, acid and enzymatic catalysts are conventionally used for the catalysis of various lignocellulosic biomass, recently application of immobilized enzymes (biocatalysts) have been considered as the most promising approach. Immobilization of different biocatalysts such as cellulase, β-glucosidase, cellobiose, xylanase, laccase, etc. on support materials including nanomaterials to form nanobiocatalyst increases catalytic efficacy and stability of enzymes. Moreover, immobilization of biocatalysts on magnetic nanoparticles (magnetic nanobiocatalysts) facilitates easy recovery and reuse of biocatalysts. Therefore, utilization of nanobiocatalysts for catalysis of lignocellulosic biomass is helpful for the development of cost-effective and ecofriendly approach. In this review, we have discussed various conventional methods of hydrolysis and their limitations. Special emphasis has been made on nanobiocatalysts used for hydrolysis of lignocellulosic biomass. Moreover, the other most important aspects, like nanofiltration of biomass, conversion of lignocellulose to nanocellulose, and toxicological issues associated with application of nanomaterials are also discussed.  相似文献   

4.
M.P. García-Aparicio 《Fuel》2011,90(4):1624-1630
Barley straw is nowadays being considered a potential lignocellulosic raw material for fuel-ethanol production as an alternative to starch- or sugar-containing feedstock. In this work, several configuration strategies for ethanol production from steam-exploded barley straw by Kluyveromyces marxianus CECT 10875 have been studied with the aim of obtaining higher ethanol concentrations.Different substrate loading (2-15%, w/v) were studied during enzymatic hydrolysis. The xylanase contribution on glucose production and glucan conversion at different substrate loading was also investigated. In addition, three different process configurations, separate hydrolysis and fermentation, simultaneous saccharification and fermentation and presaccharification and simultaneous saccharification, were compared at different water insoluble solids concentration (5%, 10% and 15%). The influence of xylanase addition on the ethanol yield was studied as well.Results show that endo-xylanases improved glucan conversion and ethanol yield compared with a standard enzymatic mixture, markedly at low substrate concentration. The positive effect of added xylanase was most evident at early stages of enzymatic hydrolysis. Regarding process configurations for the period of 72 h, SSF with endo-xylanases provided the best ethanol yield, nearly 70%, for 10% WIS. Nonetheless, the higher ethanol concentration, 29.4 g/l, was obtained at 15% WIS.  相似文献   

5.
新平台化合物乙酰丙酸制备方法研究进展   总被引:17,自引:0,他引:17  
综述了目前国内外以糠醇催化水解法和生物质直接水解法制备乙酰丙酸的研究进展 ,对这两种方法的优缺点进行了比较。目前我国乙酰丙酸制备存在着企业生产规模小、收率低、环境污染严重等问题。今后乙酰丙酸制备将以生物质资源直接水解法为主 ,通过对制备工艺的深入研究 ,向高效化、绿色化方向发展  相似文献   

6.
董平 《现代化工》2011,(Z2):40-44
以纤维素为原料生产燃料乙醇,由于其原料来源广泛及环保效益良好而被认为是最有前景的生产燃料乙醇的方法之一。在阐述我国发展纤维素乙醇必要性的基础上,综述了纤维素乙醇的浓酸水解、稀酸水解、酶水解及生物质合成气等发酵工艺及研究进展。分析了各工艺优缺点,并讨论了各工艺过程需要解决的关键技术问题,展望了纤维素乙醇的产业化前景。  相似文献   

7.
In the present study, we investigated the production of fatty acid methyl esters (FAME) from moist Chlorella sp. and Nannochloropsis oculata biomass using a hydrolysis–esterification process. Additionally, we evaluated for the first time the fatty acid profile before and after this process. Hydrolysis of the lipid fraction was performed on a moist biomass in the presence of differing amounts of an acid catalyst in both 50 and 100 % w/w water relative to the biomass. The esterification of the crude extracts of the free fatty acids (FFA) was then investigated. The experiments show that in the presence of 50 % w/w water relative to the biomass, the hydrolysis–esterification process results in higher FFA and FAME yields. The analysis of the fatty ester profiles did not reveal any degradation of the FFA from the microalgae biomass under the hydrolysis–esterification conditions. The results were compared with both extraction–transesterification and direct transesterification processes using dry biomass. The extraction–transesterification and hydrolysis–esterification processes resulted in similar FAME yields and similar profiles of the fatty esters from dry and moist biomass materials, respectively.  相似文献   

8.
周友超  姜新春 《广东化工》2010,37(5):45-46,51
纤维素燃料乙醇已成为下一代燃料乙醇的必然发展方向。文章综述了近年来以木质纤维素为原料生产燃料乙醇的关键技术,重点对物理法、化学法、蒸汽爆破法、生物法等木质纤维素原料预处理技术,酸水解、酶水解等水解(糖化)技术,以及直接发酵法、水解发酵两步法、同步水解发酵法等发酵工艺进行了总结,并指出了未来纤维素乙醇的产业化过程中必须解决的关键问题和发展趋势。  相似文献   

9.
The pretreatment of Helianthus tuberosus residue was studied for fermentable sugar production. The pretreatment was performed by varying the temperature, type of chemical solution, and concentration. Two different catalytic pretreatments using sulfuric acid and aqueous ammonia were operated and compared in a flow-through column reactor system. The flow-through process was required to increase the sugar production yield of biomass. To selectively remove the lignin of biomass and achieve fractionation of hemicellulose in the liquid phase to produce pentose, the flow-through process could be controlled by the pretreatment conditions. Furthermore, the remaining solid underwent enzymatic hydrolysis for hexose production. The mass balances of biomass pretreated with aqueous ammonia and sulfuric acid solution were compared in terms of production of fermentable sugars. The glucose recovery compared to the initial biomass was 71.2% in the pretreatment using aqueous ammonia at 170 °C, and pretreatment using sulfuric acid solution at 150 °C was 52.3%.  相似文献   

10.
木质纤维素制取燃料乙醇水解工艺技术进展   总被引:5,自引:0,他引:5  
以木质纤维素生产燃料酒精因为具有原料可再生性和环境友好的优点而备受重视。本文介绍了木质纤维素制取燃料乙醇中的水解工艺过程,包括浓酸水解、稀酸水解和生物酶水解,讨论了各个工艺的关键技术问题。  相似文献   

11.
Bioconversion of sludge from the primary clarifier of a sulphite pulping operation to ethanol offers a number of advantages over conventional disposal options. The amount of material which must be disposed of is reduced while, at the same time, salable and environmentally friendly fuel-ethanol is produced. In this study, primary clarifier sludge (PCS) was shown to be hydrolysed to produce fermentable sugars at a rate proportional to enzyme loading. Initial (1 hour) hydrolysis rates as high as 12.6 g reducing sugar/L · h were observed at an initial enzyme loading of 10 filter paper units (FPU)/g. Hydrolysis was inhibited by spent sulphite liquor (SSL), an inhibition which could be completely overcome by fermenting the SSL to remove sugars. Surfactants were found to only marginally improve the production of sugars. To reduce the deleterious effects of end product inhibition, single stage simultaneous hydrolysis and fermentation (SHF) was carried out using cellulase enzymes and Saccharomyces cerevisiae.  相似文献   

12.
近临界水中鱼肉水解制备氨基酸的反应动力学   总被引:2,自引:1,他引:1  
朱宪  程洪斌  朱宁 《化学工程》2008,36(4):31-34
利用鱼肉蛋白制备氨基酸不但具有经济效益,而且为生物质资源高效利用提供技术支持。采用HL-F(0.2 L+1.5 MG)/30 MPa-IIA超临界水反应装置,在无催化剂、反应温度分别为220,240,260℃,反应时间为30 min条件下,对鱼肉蛋白在近临界水中水解为氨基酸的反应动力学进行了实验研究。用AAA-Direct氨基酸分析仪测定不同反应时间中氨基酸总产率,以酸水解鱼肉蛋白得到的氨基酸量为完全水解标准。在水过量的情况下,得到了鱼肉蛋白水解率宏观反应动力学方程。结果表明鱼肉蛋白水解动力学的级数为1.614 7,220,240,260℃下的反应速率常数分别为0.001 7,0.004 5,0.009 7,活化能为145.125 kJ/mol,前置因子A为9.475 7×109,为工业化生产提供了基础数据。  相似文献   

13.
竹材制取生物乙醇原料预处理技术研究进展   总被引:2,自引:0,他引:2  
竹子具有可再生性强、生长周期短且富含纤维素、半纤维素,是生产乙醇的重要潜在原料之一。目前有关木质纤维素乙醇的研究主要围绕原料预处理、酶解、发酵三大关键步骤进行,其中原料预处理的能耗和效率问题是该工艺的重要制约因素。本文在综述国内外木质纤维素乙醇原料预处理的基础上,着重分析了竹材的化学组成和结构以及各种竹材预处理的优缺点。包括机械粉碎法能耗大,蒸汽爆破法对设备的要求高,化学方法易造成环境污染,生物方法生产周期长、效率低,离子液体优点明显但需要更深入的研究。提出采用不同预处理工艺联合使用,以期达到优势互补的目的。  相似文献   

14.
Levulinic acid is considered as a promising green platform chemical derived from biomass. The kinetics of levulinic acid accumulation in the hydrolysis process of wheat straw was investigated in the study. Using dilute sulfuric acid as a catalyst, the ki-netic experiments were performed in a temperature range of 190-230C and an acid concentration range of 1%-5% (by mass). A simple model of first-order series reactions was developed, which provided a satisfactory interpretation of the experimental results. The kinetics of main intermediates including sugar and 5-hydroxymethylfurfural (5-HMF) were also established. The kinetic pa-rameters provided useful information for understanding the hydrolysis process.  相似文献   

15.
Biomass has in recent years been considered as a raw material for the production of fuels and chemicals. This work discusses the reasons for the increased interest in mainly lignocellulosic biomass. Gasification, pyrolysis, and depolymerization by hydrolysis are analyzed as key biomass technology. We also discuss which of the sugars obtained via depolymerization by hydrolysis can be processed into fuel or key intermediates of the chemical industry. Lignocellulosic biomass contains such extractants as fatty acids and terpenes, and we therefore describe the catalytic reactions of these substances for the synthesis of fuels and chemicals. Some typical reactions of biomass processing (oxidation, hydrogenation, cracking, etc.) are conceptually close to the process widely known in the refining and chemical industries. There are, however, other considerations due to, e.g., the large number of functional (hydroxyl and other) groups, and the processing of biomass components therefore requires dehydration, aldol condensation, ketonization, decarboxylation, etc. We cover the fundamentals of the approaches to selecting catalysts for these reactions.  相似文献   

16.
超(亚)临界水热法处理有机废物的研究进展   总被引:1,自引:1,他引:0  
介绍了超(亚)临界水的特殊性质,综述了超(亚)临界水热法有机废物氧化和水解制有机酸、聚合物降解以及纤维性有机废物降解的应用进展,着重评述了超(亚)临界水热法生物质气化尤其是炭、碱和金属3种催化剂催化气化制取H2的发展现状,并展望了超(亚)临界水热法的发展前景。  相似文献   

17.
在高温条件下通过对木糖渣稀硫酸水解的研究,探讨了影响水解还原糖产率的因素如固液比、硫酸浓度、时间和温度,得到了水解还原糖的较优条件是固液比为1:15(质量体积比),硫酸浓度为8%,反应温度为120℃,反应时间为120min。在此条件下,得到还原糖产率为45.6%。证明通过稀酸水解处理木糖渣是一条重要和环境友好型的途径。  相似文献   

18.
Previously, ionic liquids were found to partially dissolve lignocellulosic biomass. Here, it is reported that the biomass itself does not dissolve directly, but that it is hydrolyzed first before the constituents (cellulose, hemicellulose and lignin) dissolve into the ionic liquid. By addition of an acidic catalyst, this hydrolysis step can take place at milder conditions. Acetic acid is chosen as a suitable acidic catalyst, because it is already present in lignocellulosic biomass in the form of acetyl groups on the hemicellulose. Here, it is shown that acetic acid also works as co-solvent, increasing the solubility of the constituents of lignocellulosic biomass in the ionic liquid. The milder conditions for hydrolysis result in a higher degree of utilization of the lignocellulosic biomass, whereby all constituents can be fully recovered and further processed and the ionic liquid can be reused.  相似文献   

19.
生物质能源是惟一可再生,可替代化石能源转化气态、液态和固态燃料以及其他化工原料或者产品的碳资源。随着化石能源的枯竭和人类对全球环境问题的关注,生物质能源替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点。本系列讲座主要讲述以生物质资源为主要原料,通过不同途径转化为洁净的、高品位的气体、液体或固体燃料。本讲主要阐述了国内外纤维素生物质预处理的研究进展和酸水解工艺。并对一些工艺的优缺点进行了分析和比较,指出了纤维素生物质预处理和酸水解的研究方向。  相似文献   

20.
W. Qi  S. Zhang  Q. Xu  H. Li  Z. Ren  T. Li  Y. Yan 《化学工程与技术》2009,32(4):534-540
Ethanol fuel from biomass is conventionally produced via the hydrolysis of biomass catalyzed by acid. In this paper, it is understood that the degree of polymerization of cellulose is randomly distributed and that the rupture of β‐1,4‐glucosidic bonds during acidic hydrolysis of cellulose is a process of continual depolymerization. From this perception, a model is established for the continual depolymerization of cellulose catalyzed by acid. Meanwhile, analog computation resulted in the activation energy and the reaction rate constant related to the rupture of β‐1,4‐glucosidic bonds. The established model is highly validated by test runs and thus assumed as a model that can be used to describe the depolymerization route taken in acidic hydrolysis of cellulose. The calculated activation energy and rate constant for the rupture of β‐1,4‐glucosidic bonds correspond to the rule of acidic hydrolysis of cellulose. Investigation of the model is of great significance in further studies on the hydrolysis mechanism of cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号