首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用同轴静电纺丝制备聚乳酸/聚醚砜(PLA/PES)复合纳米纤维膜,通过改变皮层溶液的挤出速率以及在芯层溶液中分别添加石墨烯(GO)、碳纳米管(MWCNTs)、埃洛石(HNTs)纳米粒子,制备了系列皮芯结构的复合纳米纤维膜。通过扫描电子显微镜、纤维强伸度仪、接触角测定仪等仪器测试表征了复合纳米纤维膜的纤维结构、拉伸强度、疏水性以及吸油倍率等性能。结果表明,制备的复合纳米纤维膜的接触角均大于130 °,表现出较好的亲油疏水性;当往芯液中添加石墨烯(GO)时,纳米纤维膜的吸油性能、拉伸性能最好,在甘油中的吸油倍率可达到67.61倍,食用油中可达到48.02倍,纵向断裂强度为62.68 MPa,横向断裂强度为43.98 MPa,横向断裂伸长率可达到697.76 %。  相似文献   

2.
采用改进Hummer法制备了氧化石墨烯,并由氧化石墨烯制备了还原氧化石墨烯(RGO),将其添加到热塑性聚氨酯(PU)纺丝液中,用静电纺丝法制备了RGO/PU纳米复合纤维。讨论了纺丝电压对纤维的影响,考察了复合纤维膜的形貌、导电性能和力学性能。结果表明,纺丝电压为23~28 k V时有明显的泰勒锥;在PU中添加质量分数为0.50%的RGO可以明显提高复合纤维的导电性能;加入RGO后PU纤维拉伸强度和断裂伸长率提升明显。  相似文献   

3.
以N,N-二甲基甲酰胺(DMF)为溶剂、超支化聚酰胺修饰的氧化石墨烯(HPNGO)和热塑性聚氨酯(TPU)为原料,采用静电纺丝法制备了HPNGO/TPU复合纳米纤维。通过扫描电子显微镜、傅里叶变换红外光谱仪和动态力学分析仪研究了不同添加量的HPNGO对HPNGO/TPU复合纳米纤维的形貌、结构及性能的影响。结果表明:HPNGO/TPU复合纳米纤维直径与HPNGO的添加量成反比关系,纤维拉伸强度和初始模量与HPNGO的添加量成正比关系;当添加HPNGO质量分数(相对TPU)为3%时,HPNGO/TPU复合纳米纤维直径最小,平均直径为0.17μm,拉伸强度和初始模量最大,分别为3.884,0.193 MPa,断裂伸长率最小为170.2%;HPNGO的加入对TPU的分子结构无影响,二者之间为物理复合。  相似文献   

4.
静电纺丝制备的纳米纤维孔隙率高、吸附能力强,可用于高效地处理化工行业油污染问题。聚乳酸(PLA)作为生物可降解材料,来源广泛且不会造成二次污染,具有广阔的应用前景。本文利用自制的熔体微分电纺装置,制备了PLA/乙酰基柠檬酸三丁酯(ATBC)纤维膜,探究了物料性质和增塑剂ATBC含量对PLA纤维形貌及吸油性能的影响,并获得了最佳的纺丝温度和ATBC含量。研究表明,在纺丝温度为240℃、ATBC质量分数为10%时制备的纤维直径为320nm。该纤维膜水接触角为145°,表现出良好的疏水性能,吸油倍率为138.4g/g,是市售PP无纺布吸油性能的4~5倍,保油倍率为85.8g/g。重复吸/放油5次循环后,纤维膜仍具有良好的强度而未发生断裂且可继续进行吸油,重复使用性能较好,可被应用于化工行业油污染处理。  相似文献   

5.
碳纳米管-石墨烯-碳纳米纤维复合电极的制备及应用   总被引:1,自引:0,他引:1  
配制含乙酸钴和乙酸镍的氧化石墨烯-聚丙烯腈(Co~(2+)-Ni~(2+)/GO-PAN)纺丝液,经静电纺丝技术制成碳纳米级纤维GO-PAN,预氧化和碳化处理GO-PAN得到分级多孔碳纳米管/石墨烯-碳纳米纤维(CNTs/G-CNFs)复合材料,对其结构和性能进行表征。结果表明,GO还原的石墨烯(G)均匀分布CNTs/G-CNFs内部,碳纳米管(CNTs)大量生长在CNTs/G-CNFs表面,使材料比表面积高达223.8 m~2/g。将0.5 g CNTs/G-CNFs组装成电容去离子技术(CDI)电极,在Na Cl的质量浓度为200 mg/L、处理时间为10 min的条件下,对比发现其电吸附脱盐能力高于CNFs和G-CNFs电极,最大除盐量达8.17 mg/g、除盐效率20.47%;并且5次循环使用后,除盐量和除盐效率下降不大,证明这种分级多孔的电极材料具有优异的除盐性能和可再生循环吸附能力。  相似文献   

6.
采用水溶液饱和法制备了肉桂醛/β环糊精包合物,将其添加到聚乳酸(PLA)溶液中,利用静电纺丝技术制备PLA/肉桂醛复合纳米纤维膜。利用扫描电子显微镜(SEM)探讨了静电纺丝条件对PLA纳米纤维膜纤维直径及表面形貌的影响,通过傅里叶变换红外光谱(FTIR)对PLA/肉桂醛复合纳米纤维膜做了特征官能团分析,并对其热力学性能、力学性能及抗菌性能进行了表征。结果表明,制备的PLA/肉桂醛复合纳米纤维膜纤维形态良好,平均直径为175 nm,FT IR研究显示肉桂醛与PLA之间属于物理混合。该复合纳米纤维膜热分解温度265.52 ℃,拉伸强度为2.45 MPa,对大肠杆菌、金黄色葡萄球菌和枯草芽孢杆菌都具有抑菌性,其中对金黄色葡萄球菌的抑菌性最强。  相似文献   

7.
屈瑾 《合成纤维》2023,(5):34-37+58
碳纳米纤维材料目前应用越来越广泛,将金属氧化物修饰到碳纳米纤维材料上,可以防止金属氧化物纳米颗粒的团聚。选用聚丙烯腈以及N,N-二甲基甲酰胺作为原材料,利用静电纺丝-煅烧法制备了氧化铈/碳纳米复合纤维膜,研究了复合纤维膜对水中As3+、As5+的吸附率,并以亚甲基蓝溶液作为污染物,研究了其催化和氧化性能,为材料优化和性能提升奠定了基础。  相似文献   

8.
以聚丙烯腈、氧化石墨烯为原料,采用静电纺丝工艺制备氧化石墨烯/聚丙烯腈纳米纤维,利用SEM对其微观结构进行观察,确定了静电纺丝的最佳配比参数。通过预氧化及炭化工艺,获得比表面积大、孔径均匀的石墨烯/纳米炭纤维。经SEM、TEM、DSC和TGA等测试对石墨烯/纳米炭纤维进行分析表征。结果表明,石墨烯以游离、包裹以及嵌入3种方式与纤维连接形成一个"面到线"的网络结构,比表面积增大,与纳米炭纤维相比,比表面积提高了43.72 m~2/g,为437.36 m~2/g。  相似文献   

9.
以酚醛树脂作为炭前驱体,硝酸铜为铜源,通过静电纺丝技术结合固化、炭化工艺制备了CuO/C复合纳米纤维,探究了炭化温度对复合纳米纤维的微观形貌和电化学性能的影响。结果表明,所得复合纳米纤维的直径在400 nm左右,纤维表面析出颗粒明显,且颗粒尺寸随炭化温度升高不断变大。随着炭化温度的升高,复合纤维比表面积先减小后增大。电化学测试显示,炭化温度为600℃时所得复合纳米纤维的容量最高,电流密度为0.05 A/g时比容量达到363.8 mAh·g~(-1);炭化温度为800℃时所得复合纤维的倍率及循环性能最佳,电流密度为0.05 A/g时比容量达到311.1 mAh·g~(-1),在2 A/g下容量保持率为35.7%,在0.1 A/g下100次循环后容量保持率为51.7%。  相似文献   

10.
采用静电纺丝法制备了聚偏氟乙烯(PVDF)纳米纤维膜,并采用共混纺丝法和真空抽滤两种方式将还原氧化石墨烯微球(rGO)负载于其上,获得高通量rGO微球@PVDF纳米纤维复合油水分离膜。通过调整静电纺丝过程参数(如推注速率和电场强度等)和纺丝液配方,对PVDF纳米纤维膜结构进行优化,并采用不同的rGO微球负载量、负载方式、黏结剂含量来提高纳米纤维膜的表面粗糙度和疏水性。利用扫描电子显微镜和接触角测试对纤维膜的表面形貌和亲疏水性进行表征,并通过二氯甲烷-水体系进行油水分离实验,测试了不同配方下杂化膜的重力驱动油水分离性能。结果表明,当静电纺丝溶液中PVDF含量为14%时,以1 mL·h-1的推注速率,在15 kV下制得的PVDF纳米纤维膜,并将1%PVDF溶液、3 mg rGO微球(与黏结剂中有效成分PVDF质量比为3∶1)和溶剂组成的铸膜液抽滤在膜表面,复合膜表面水接触角为130.9°,其油水分离过程中的有机溶剂透过通量可达5 641.3 L·h-1·m-2,水相的截留率为99.28%。  相似文献   

11.
以醋酸纤维素(CA)为原料,通过静电纺丝制备CA纳米纤维;将CA纳米纤维在去离子水中形成均匀的分散体,然后在分散液中引入N-羟甲基丙烯酰胺(HAM),通过冷冻、热处理制备CA纳米纤维/HAM复合气凝胶(CNFA);探讨了HAM添加量对CNFA力学性能和隔热性能的影响.结果表明:当纺丝液CA质量分数为15%时,静电纺CA...  相似文献   

12.
随着电子设备的迅速普及,电磁干扰和电磁污染问题随之而来,因此,高性能电磁波吸收材料的设计迫在眉睫。静电纺丝纳米纤维复合材料具有质量轻、柔性大、易加工、兼容性强等优势,有望实现吸波材料“薄、轻、宽、强”的技术要求。该文首先介绍了电磁波吸收材料的吸波原理,之后综述了静电纺丝技术在吸波材料中的研究进展,包括静电纺丝纳米纤维与金属及其氧化物、碳纳米材料与导电聚合物、过渡金属碳化物的复合以及在多层吸波材料中的应用,总结了不同种类复合材料的优缺点。最后,展望了静电纺丝纳米纤维在吸波领域的发展趋势以及应该关注的问题。  相似文献   

13.
丁姣  赖锐豪  陈文杰  黄素青  尹国强 《化工进展》2020,39(10):4155-4163
以纯角蛋白为原料,采用静电纺丝技术制备的角蛋白纳米纤维膜脆性大、力学性能差,添加化学助剂能够明显改善角蛋白溶液的可纺性,提高角蛋白纳米纤维膜的综合性能。本文主要介绍了在静电纺丝过程中优化和改善角蛋白纳米纤维膜性能的三类化学助剂,包括改善纺丝液可纺性的助纺剂、增强纳米纤维膜综合性能的交联剂以及增加纳米纤维膜特殊功能的抗菌剂。阐述了以上三类化学助剂在静电纺角蛋白纳米纤维膜材料中的相关作用机理,对比了添加化学助剂前后角蛋白纳米纤维膜的结构和性能的变化情况,展望了化学助剂在静电纺角蛋白纳米纤维材料中潜在的应用价值和广阔的应用前景,提出了今后化学助剂在优化静电纺角蛋白纳米纤维综合性能方面的研究方向。  相似文献   

14.
正本发明属于石油化工和碳纳米交叉领域,涉及一种静电纺丝制备锂离子电池负极用多层柔性聚丙烯腈/沥青碳纤维复合材料的方法。首先通过静电纺丝制备聚丙烯腈纤维,脱油和聚乙烯吡咯烷酮的混合溶液再经静电纺丝制备混纺纤维并收集在聚丙烯腈纤维上,重复上述步骤即可制得具有多层结构的聚丙烯腈/沥青复合纤维材料,经过预氧化和碳化,制得多层柔性聚丙烯腈/沥青碳纤  相似文献   

15.
通过在酚酞聚醚砜(PES-C)纺丝液中添加不同含量的两性离子改性的酚酞聚醚砜(PES-CB),然后利用溶液喷射纺丝法制备PES-CB/PES-C复合纳米纤维膜,并通过扫描电子显微镜、红外、差示扫描量热仪、热重分析、接触角等对复合纳米纤维膜进行了测试表征,最后将复合纳米纤维膜进行淀粉溶液过滤测试。结果表明,随着PES-CB含量的增加,纳米纤维的直径不断减小,当PES-CB添加量达到30%时,复合纳米纤维膜的平均直径减小到300nm左右。同时由于两性离子支链的存在,纤维膜的亲水性也得到提高,但其耐热性降低。过滤测试结果表明,随着PES-CB含量的增加,膜的抗污染能力得到明显提高,当PES-CB添加量达到30%时,过滤淀粉溶液的水通量恢复率(FRR%)达到83%左右。结合纺丝过程及过滤性能测试来看,PES-CB添加量在30%左右制备的复合纳米纤维膜综合性能最佳。  相似文献   

16.
石墨烯是一种新型的碳材料具有优异的光学、电学、热学性能,可制备高性能纳米复合材料。以氧化石墨烯( GO)为前驱体的一维纤维可提高其柔韧性和导电性。本文针对石墨烯及其复合材料的研究现状进行了简述,评论了石墨烯复合纤维的性能,并展望了其应用领域与发展前景。  相似文献   

17.
使用超支化型聚乙烯亚胺(PEI)对氧化石墨烯(GO)进行改性制得改性氧化石墨烯分散液(GO-PEI);并在水性聚氨酯乳化过程中原位引入 GO-PEI分散液,并还原制备水性聚氨酯 /改性石墨烯纳米复合乳液(WPU/RGO-PEI)。通过红外光谱、紫外光谱、粒度分析、扫描电子显微镜和力学分析对 GO-PEI、复合乳液和复合膜的微观结构与性能进行了表征。结果表明: RGO-PEI在水性聚氨酯膜中均匀分散,当 RGO-PEI添加量为 7%时模量提高 12倍,添加量为 15%时表面电导率达 5.57×10-4 S/cm。  相似文献   

18.
研究了纺丝液浓度对聚丙烯腈(PAN)静电纺丝纤维直径,以及对PAN静电纺丝纳米纤维膜复合滤材过滤性能的影响。测试结果表明,纺丝液浓度增加,静电纺丝纤维直径变粗,孔径增大,其中质量分数为16%的纺丝液具有良好的纺丝性能,静电纺丝所得的纳米纤维直径均匀,复合后滤材在颗粒直径0.3μm,过滤风速5.3 cm/s的测试条件下,过滤效率达到99.98%,阻力为138 Pa,达到H13级别,具有高效低阻特性。  相似文献   

19.
采用热还原的方法由氧化石墨烯(GO)制备得到还原石墨烯(RGO),并将两种石墨烯与热塑性聚氨酯(TPU)复合制得纳米复合材料薄膜。进而考察了两种纳米复合材料薄膜的导电、导热及力学性能。结果表明:在TPU中加入GO能够得到高导热、低导电的纳米复合材料,而加入RGO则得到高导热、高导电的纳米复合材料;同时,GO和RGO的加入,均能显著提高TPU的拉伸强度和模量。  相似文献   

20.
通过溶胶-凝胶法制备二氧化钛(TiO_2),水热法制备γ型二氧化锰(γ-Mn O_2),以TiO_2/γ-Mn O_2/热塑性聚氨酯(TPU)作为溶质,N,N-二甲基甲酰胺作为溶剂,通过静电纺丝制得不同TiO_2和γ-Mn O_2掺杂量的复合纤维膜,在空气过滤的同时高效氧化甲醛。利用SEM、TEM、XRD、N_2物理吸脱附仪、FTIR和UV-Vis对复合纤维膜的形貌、结构和氧化性能进行表征。结果表明,温度为40℃,经碘钨灯可见光照射后,掺杂TiO_2和γ-Mn O_2的质量分数为8%的复合纤维膜具有最好的持续氧化活性,甲醛的转化率达到90%左右,可在低温空气过滤条件下实现负载少量氧化物的复合纤维膜高效氧化甲醛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号