首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Flame hydrolysis deposition (FHD) of glasses has previously found applications in the telecommunications industry. This paper shows how the technology can be used to deposit silica with different refractive indices and thereby produce low-loss planar waveguides for use in analytical applications. We also show that the glasses can be patterned using a new reactive ion etch and sealed using a modification of anodic bonding, such that the resulting microstructures can be readily incorporated within a lithographically defined "chip", integrating both optical and fluidic circuitry on the same device. In the example described in this paper, waveguides, analytical microtiter chambers and fluidic capillary channels, with the necessary high aspect ratio features (and with depths up to 40 microm) were all produced in glass, using the appropriate deposition and etching technologies. The performance of the chip was assessed in the framework of a low-volume fluorescence assay, using waveguides to address miniaturized microtiter chambers with volumes of 230 and 570 pL. Devices featuring different optical detection configurations, including both in-line and orthogonal waveguide geometries, were fabricated. In the optimal configuration, the experimental detection limit was determined as ca. 20 pM (equivalent to 10 zmol) of a cyanine fluorophore, Cy5. The applicability of the device as a biochip platform was further illustrated by analytical measurements on fluorescently labeled oligodeoxynucleotides.  相似文献   

2.
The next major challenges for lab-on-a-chip (LoC) technology are 1) the integration of microfluidics with optical detection technologies and 2) the large-scale production of devices at a low cost. In this paper the fabrication and characterisation of a simple optical LoC platform comprising integrated multimode waveguides and microfluidic channels based on a photo-patternable acrylate based polymer is reported. The polymer can be patterned into both waveguides and microfluidic channels using photolithography. Devices are therefore both quick and cost-effective to fabricate, resulting in chips that are potentially disposable. The devices are designed to be highly sensitive, using an in-plane direct excitation configuration in which waveguides intersect the microfluidic channel orthogonally. The waveguides are used both to guide the excitation light and to collect the fluorescence signal from the analyte. The potential of the device to be used for fluorescence measurements is demonstrated using an aqueous solution of sodium fluorescein. A detection limit of 7 nM is achieved. The possibilities offered by such a device design, in providing a cost-effective and disposable measurement system based on the integration of optical waveguides with LoC technology is discussed.  相似文献   

3.
Integration of photonic and silver nanowire plasmonic waveguides   总被引:1,自引:0,他引:1  
Future optical data transmission modules will require the integration of more than 10,000 x 10,000 input and output channels to increase data transmission rates and capacity. This level of integration, which greatly exceeds that of a conventional diffraction-limited photonic integrated circuit, will require the use of waveguides with a mode confinement below the diffraction limit, and also the integration of these waveguides with diffraction-limited components. We propose to integrate multiple silver nanowire plasmonic waveguides with polymer optical waveguides for the nanoscale confinement and guiding of light on a chip. In our device, the nanowires lay perpendicular to the polymer waveguide with one end inside the polymer. We theoretically predict and experimentally demonstrate coupling of light into multiple nanowires from the same waveguide, and also demonstrate control over the degree of coupling by changing the light polarization.  相似文献   

4.
Multimode polymer waveguides and fiber-to-waveguide couplers have been integrated with microfluidic channels by use of a single-mask-step procedure, which ensured self-alignment between the optics and the fluidics and allowed a fabrication and packaging time of only one day. Three fabrication procedures for obtaining hermetically sealed channels were investigated, and the spectrally resolved propagation loss (400-900 nm) of the integrated waveguides was determined for all three procedures. Two chemical absorbance cells with optical path lengths of 100 and 1000 microm were furthermore fabricated and characterized in terms of coupling loss, sensitivity, and limit of detection for measurements of the dye bromothymol blue.  相似文献   

5.
We present the design and fabrication of 1-to-N multimode interference (MMI) splitters, suitable for use in integrated optical fluorescence array sensing, with particular applications in lab-on-a-chip (micro-TAS) technologies. Electron beam irradiation of germanium-doped flame hydrolysis deposited silica was used to define the MMI waveguide regions. The splitters were integrated with microfluidic channels to form direct-excitation fluorescence sensor chips for use at visible wavelengths. Characterization of the waveguides shows that predictable splitting ratios can be achieved. Two devices are presented: a 1/spl times/2 splitter integrated with one analytical chamber and a 1/spl times/4 array device for multipoint excitation. A photomultiplier tube was used to assess the analytical performance of the chip, in response to standard aliquots of fluorophore (31 nM to 1.25 /spl mu/M).  相似文献   

6.
Rapid detection and identification of influenza virus is becoming increasingly important in the face of concerns over an influenza pandemic. A fully integrated and self-contained microfluidic device has been developed to rapidly identify influenza A hemagglutinin and neuraminidase subtypes and sequence portions of both genes. The device consists of a DNA microarray with 12 000 features and a microfluidic cartridge that automates the fluidic handling steps required to carry out a genotyping assay for pathogen identification and sequencing. The fully integrated microfluidic device consists of microfluidic pumps, mixers, valves, fluid channels, reagent storage chambers, and DNA microarray silicon chip. Microarray hybridization and subsequent fluidic handling and reactions were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross talk of the stored reagents. The genotyping results showed that the device identified influenza A hemagglutinin and neuraminidase subtypes and sequenced portions of both genes, demonstrating the potential of integrated microfluidic and microarray technology for multiple virus detection. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps and allows the detection and identification of influenza virus in a rapid and automated fashion.  相似文献   

7.
A method for high-throughput 3D self-assembly of 2D photopatterned microstructures using railed microfluidics is presented. Vertical device patterning of heterogeneous materials requires high-level integration using conventional microelectromechanical system (MEMS) technology; however, 3D railed assembly enables easy and fast self-assembly via a fluidic axis-translation process and simple material exchange in microfluidic channels. Individually photopatterned 2D microstructures are axis-translated from in-plane to out-of-plane and fluidically self-assembled, guided by side-rails in microfluidic channels to form a 3D morphology. Since the structures are fabricated in fluidic environments, there are no fixed initial points on the channel substrate allowing fluidic horizontal stacking of erected 2D structures. The guiding mechanism of railed microfluidics enables efficient fluidic handling and deterministic 3D self-assembly of heterogeneous components such as electronic components or polymeric microstructures using only fluidic force.  相似文献   

8.
We have developed a nonstick polymer formulation for creating moving parts inside of microfluidic channels and have applied the technique to create piston-based devices that overcome several microfluidic flow control challenges. The parts were created bycompletely filling the channels of a glass microfluidic chip with the monomer/ solvent/initiator components of a nonstick photopolymer and then selectively exposing the chip to UV light in order to define mobile pistons (or other quasi-two-dimensional shapes) inside the channels. Stops defined in the substrate prevent the part from flushing out of the device but also provide sealing surfaces so that valves and other flow control devices are possible. Sealing against pressures greater than 30 MPa (4,500 psi) and actuation times less than 33 ms are observed. An on-chip check valve, a diverter valve, and a 10-nL pipet are demonstrated. This valving technology, coupled with high-pressure electrokinetic pumps, should make it possible to create a completely integrated HPLC system on a chip.  相似文献   

9.
Sealing of the flow channel is an important aspect during integration of microfluidic channels and optical waveguides. The uneven topography of many waveguide-fabrication techniques will lead to leakage of the fluid channels. Planarization methods such as chemical mechanical polishing or the etch-back technique are possible, but troublesome. We present a simple but efficient alternative: By means of changing the waveguide layout, bonding pads are formed along the microfluidic channels. With the same height as the waveguide, they effectively prevent leakage and hermetically seal the channels during bonding. Negligible influence on light propagation is found when 10-mum-wide bonding pads are used. Fabricated microsystems with application in absorbance measurements and flow cytometry are presented.  相似文献   

10.
Emory JM  Soper SA 《Analytical chemistry》2008,80(10):3897-3903
Single molecule detection (SMD) readouts are particularly attractive for assays geared toward high-throughput processing, because they can potentially reduce assay time by eliminating various processing steps. Unfortunately, most flow-based SMD experiments have generated low throughputs due primarily to the fact that they are configured in single assay formats. The use of a charge-coupled device (CCD) with flow-based SMD can image multiple single molecule assays simultaneously to realize high-throughput processing capabilities. We present, for the first time, the ability to simultaneously track and detect single molecules in multiple microfluidic channels by employing a CCD camera operated in time-delayed integration (TDI) mode as a means for increasing the throughput of any single molecule measurement. As an example of the technology, we have configured a CCD to operate in a TDI mode to detect single double-stranded DNA molecules (lambda and pBR322) labeled with an intercalating dye (TOTO-3) in a series of microfluidic channels poised on a poly(methyl methacrylate), PMMA, chip. A laser beam was launched into the side of the chip, which irradiated a series of fluidic channels (eight) with the resulting fluorescence imaged onto a CCD. Using this system, we were able to identify single DNA molecules based on the fluorescence burst intensity arising from differences in the extent of dye labeling associated with the DNA molecule length. The CCD/TDI approach allowed increasing sample throughput by a factor of 8 compared to a single-assay SMD experiment. A sampling throughput of 276 molecules s (-1) per channel and 2208 molecules s (-1) for an eight channel microfluidic system was demonstrated. Operated in its full capacity, this multichannel format was projected to yield a sample throughput of 1.7 x 10 (7) molecules s (-1), which represents a 170-fold improvement over previously reported single molecule sampling rates.  相似文献   

11.
Liu J  Sun X  Lee ML 《Analytical chemistry》2005,77(19):6280-6287
A surface-reactive acrylic polymer, poly(glycidyl methacrylate-co-methyl methacrylate) (PGMAMMA), was synthesized and evaluated for suitability as a substrate for fabrication of microfluidic devices for chemical analysis. This polymer has good thermal and optical properties and is mechanically robust for cutting and hot embossing. A key advantage of this polymeric material is that the surface can be easily modified to control inertness and electroosmotic flow using a variety of chemical procedures. In this work, the procedures for aminolysis, photografting of linear polyacrylamide, and atom-transfer radical polymerization on microchannel surfaces in PGMAMMA substrates were developed, and the performance of resultant microfluidic electrophoresis devices was demonstrated for the separation of amino acids, peptides, and proteins. Separation efficiencies as high as 4.6 x 10(4) plates for a 3.5-cm-long separation channel were obtained. The results indicate that PGMAMMA is an excellent substrate for microfabricated fluidic devices, and a broad range of applications should be possible.  相似文献   

12.
Matching the scale of microfluidic flow systems with that of microelectronic chips for realizing monolithically integrated systems still needs to be accomplished. However, this is appealing only if such re‐scaling does not compromise the fluidic throughput. This is related to the fact that the cost of microelectronic circuits primarily depends on the layout footprint, while the performance of many microfluidic systems, like flow cytometers, is measured by the throughput. The simple operation of inertial particle focusing makes it a promising technique for use in such integrated flow cytometer applications, however, microfluidic footprints demonstrated so far preclude monolithic integration. Here, the scaling limits of throughput‐per‐footprint (TPFP) in using inertial focusing are explored by studying the interplay between theory, the effect of channel Reynolds numbers up to 1500 on focusing, the entry length for the laminar flow to develop, and pressure resistance of the microchannels. Inertial particle focusing is demonstrated with a TPFP up to 0.3 L/(min cm2) in high aspect‐ratio rectangular microfluidic channels that are readily fabricated with a post‐CMOS integratable process, suggesting at least a 100‐fold improvement compared to previously demonstrated techniques. Not only can this be an enabling technology for realizing cost‐effective monolithically integrated flow cytometry devices, but the methodology represented here can also open perspectives for miniaturization of many biomedical microfluidic applications requiring monolithic integration with microelectronics without compromising the throughput.  相似文献   

13.
Coupling of polymeric microfluidic devices to mass spectrometry is reported using porous polymer monoliths (PPM) as nanoelectrospray emitters. Lauryl acrylate-co-ethylene dimethacrylate porous polymer monolith was photopatterned for 5 mm at the end of the channel of microfluidic devices fabricated from three different polymeric substrate materials, including the following: poly(dimethylsiloxane) (PDMS), poly(methyl methacrylate) (PMMA), and cyclic olefin copolymer (COC). Spraying directly from the end of the chip removes any dead volume associated with inserted emitters or transfer lines, and the presence of multiple pathways in the PPM prevents the clogging of the channels, which is a common problem in conventional nanospray emitters. Spraying from a microfluidic channel having a PPM emitter produced a substantial increase in TIC stability and increased sensitivity by as much as 70x compared to spraying from an open end chip with no PPM. The performance of PPM emitter in COC, PMMA, and PDMS chips was compared in terms of stability and reproducibility of the electrospray. COC chips showed the highest reproducibility in terms of chip-to-chip performance, which can be attributed to the ease and reproducibility of the PPM formation due to the favorable optical and chemical properties of COC. We have further tested the performance of the COC chips by constant infusion of poly(propylene glycol) solution at organic content ranging from 10 to 90% methanol and at flow rates ranging from 50 to 1000 nL/min, showing optimum spraying conditions (RSD < 5%) at 50-70% organic content and at flow rates from 100 to 500 nL/min. The PPM sprayer was also used for protein preconcentration and desalting prior to mass spectrometric detection, and results were comparable with a chip spraying from an electrospray tip.  相似文献   

14.
We have fabricated a flow-through biochip assembly that consisted of two different microchips: (1) a polycarbonate (PC) chip for performing an allele-specific ligation detection reaction (LDR) and (2) a poly(methyl methacrylate) (PMMA) chip for the detection of the LDR products using an universal array platform. The operation of the device was demonstrated by detecting low-abundant DNA mutations in gene fragments (K-ras) that carry point mutations with high diagnostic value for colorectal cancers. The PC microchip was used for the LDR in a continuous-flow format, in which two primers (discriminating primer that carried the complement base to the mutation being interrogated and a common primer) that flanked the point mutation and were ligated only when the particular mutation was present in the genomic DNA. The miniaturized reactor architecture allowed enhanced reaction speed due to its high surface-to-volume ratio and efficient thermal management capabilities. A PMMA chip was employed as the microarray device, where zip code sequences (24-mers), which were complementary to sequences present on the target, were microprinted into fluidic channels embossed into the PMMA substrate. Microfluidic addressing of the array reduced the hybridization time significantly through enhanced mass transport to the surface-tethered zip code probes. The two microchips were assembled as a single integrated unit with a novel interconnect concept to produce the flow-through microfluidic biochip. A microgasket, fabricated from an elastomer poly(dimethylsiloxane) with a total volume of the interconnecting assembly of <200 nL, was used as the interconnect between the two chips to produce the three-dimensional microfluidic network. We successfully demonstrated the ability to detect one mutant DNA in 100 normal sequences with the biochip assembly. The LDR/hybridization assay using the assembly performed the entire assay at a relatively fast processing speed: 6.5 min for on-chip LDR, 10 min for washing, and 2.6 min for fluorescence scanning (total processing time 19.1 min) and could screen multiple mutations simultaneously.  相似文献   

15.
Integrating multiple analytical processes into microfluidic devices is an important research area required for a variety of microchip-based analyses. A microfluidic system is described that achieves preparative separations by intelligent fraction collection of attomole quantities of sample. The device consists of a main microfluidic channel used to perform electrophoresis, which is interconnected at 90 degrees to two vertically displaced channels via a nanocapillary array membrane. The membrane interconnect contains nanometer-diameter pores that provide fluidic communication between the channels. Sample injection and analyte collection are controlled by application of an electrical bias between the microfluidic channels across the nanocapillary array. After the separation, the automated transfer of the FITC-labeled Arg, Gln, and Gly bands occurs; a fluorescence detector located at the separation/collection channel interconnect is used to generate a triggering signal that initiates suitable voltages to allow near-quantitative transfer of analyte from the separation channel to the second fluidic layer. The ability to achieve such sample manipulations from mass-limited samples enables a variety of postseparation processing events.  相似文献   

16.
Kim JE  Cho JH  Paek SH 《Analytical chemistry》2005,77(24):7901-7907
A functional lab-on-a-chip has been developed for simultaneous quantitative analyses of high-density lipoprotein (HDL) cholesterol (HDL-C) and total cholesterol (total-C) in a submicroliter plasma sample. The analytical device was fabricated by placing commercial membranes, traditionally used for rapid diagnostics, within microfluidic channels engraved on the surface of a plastic chip. The concentration of HDL-C was measured using enzymatic reactions to produce a colorimetric signal after separation of the single plasma lipoprotein from a mixture. Two small pieces of different membrane pads were used to provide each group of reagents, for HDL separation and enzyme reactions, deposited within their tiny pores in a dry state. To maintain a connection toward the capillary action of the medium, the pads were arranged in a sequence within the fluidic channel that controlled the inlet and outlet of the flow. Upon the addition of a sample, the fluid was delivered through the pads of the chip and a color signal was subsequently generated in proportion to the concentration of HDL-C. The level of total-C was concurrently determined by following identical processes, except absent HDL separation. The two signals were simultaneously determined by employing optical detectors based on transmittance of a light. Such total analyses were completed within 2 min, and the sample sizes were able to be reduced to 0.4 microL for HDL-C and 0.1 microL for total-C, enough to cover the clinically required dynamic ranges.  相似文献   

17.
18.
This study reports both analytical and numerical thermal-structural models of polymer Bragg grating (PBG) waveguides illuminated by a light emitting diode (LED). A polymethyl methacrylate (PMMA) Bragg grating (BG) waveguide is chosen as an analysis vehicle to explore parametric effects of incident optical powers and substrate materials on the thermal-structural behavior of the BG. Analytical models are verified by comparing analytically predicted average excess temperatures, and thermally induced axial strains and stresses with numerical predictions. A parametric study demonstrates that the PMMA substrate induces more adverse effects, such as higher excess temperatures, complex axial temperature profiles, and greater and more complicated thermally induced strains in the BG compared with the Si substrate.  相似文献   

19.
Recent trends in the development of microfluidic and biodiagnostic chips favor polymer materials over glass, primarily for optical and economical reasons. Therefore, existing chemical methods to prepare biomolecule microarrays on glass slides have to be adapted or replaced in order to suit polymer substrates. Here we present a strategy to immobilize DNA and antibodies on cyclic polyolefin slides, like Zeonor. This polymer represents a class of new polymeric materials with excellent optical and mechanical properties. By plasma and liquid chemical treatment followed by coating with polyelectrolytes, we have succeeded in immobilizing DNA onto the polymer substrate, yielding stable and versatile biosensor surfaces. We demonstrate the stability and usage of the coated Zeonor substrates not only in DNA chip technology but also in protein chip technology with DNA-directed immobilization of proteins.  相似文献   

20.
We describe a novel method for quantitatively mapping fluidic temperature with high spatial resolution within microchannels using fluorescence lifetime imaging in an optically sectioning microscope. Unlike intensity-based measurements, this approach is independent of experimental parameters, such as dye concentration and excitation/detection efficiency, thereby facilitating quantitative temperature mapping. Micrometer spatial resolution of 3D temperature distributions is readily achieved with an optical sectioning approach based on two-photon excitation. We demonstrate this technique for mapping of temperature variations across a microfluidic chip under different heating profiles and for mapping of the 3D temperature distribution across a single microchannel under applied flow conditions. This technique allows optimization of the chip design for miniaturized processes, such as on-chip PCR, for which precise temperature control is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号