首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High temperature proton exchange membrane fuel cells (HT-PEMFCs) are considered to be the next generation fuel cells. Compared with standard low temperature proton exchange membrane fuel cells (LT-PEMFCs) the electrochemical kinetics for electrode reactions are enhanced by using a polybenzimidazole based membrane at an operation temperature between 160 °C and 180 °C. However, starting HT-PEMFCs from room temperature to a proper operation temperature is a challenge in application where a fast start of the fuel cell is required such as in uninterruptible power supply systems. There are different methods to start-up HT-PEMFCs. Based on a 3D physical model of a single HT-PEMFC, the start-up process is analyzed by comparing the start-up duration of the different start-up concepts. Furthermore, the temperature distribution in the HT-PEMFC is also analyzed. Finally, an optimal start-up method is proposed for the given cell configuration.  相似文献   

2.
Electrochemical carbon corrosion occurring in a high temperature proton exchange membrane fuel cell (HT-PEMFC) operating under non-humidification conditions was investigated by measuring CO2 generation using on-line mass spectrometry and comparing the results with a low-temperature proton exchange membrane fuel cell (LT-PEMFC) operated under fully humidified conditions. The experimental results showed that more CO2 was measured for the HT-PEMFC, indicating that more electrochemical carbon corrosion occurs in HT-PEMFCs. This observation is attributed to the enhanced kinetics of electrochemical carbon corrosion due to the elevated operating temperature in HT-PEMFCs. Additionally, electrochemical carbon corrosion in HT-PEMFCs showed a strong dependence on water content. Therefore, it is critical to remove the water content in the supply gases to reduce electrochemical carbon corrosion.  相似文献   

3.
A high temperature-proton exchange membrane fuel cells (HT-PEMFC) based on phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane is able to operate at elevated temperature ranging from 100 to 200 °C. Therefore, it is evident that the relative humidity (RH) of gases within a HT-PEMFC must be minimal owing to its high operating temperature range. However, it has been continuously reported in the literature that a HT-PEMFC performs better under higher inlet RH conditions. In this study, inlet RH dependence on the performance of a HT-PEMFC is precisely studied by numerical HT-PEMFC simulations. Assuming phase equilibrium between membrane and gas phases, we newly develop a membrane water transport model for HT-PEMFCs and incorporate it into a three-dimensional (3-D) HT-PEMFC model developed in our previous study. The water diffusion coefficient in the membrane is considered as an adjustable parameter to fit the experimental water transport data. In addition, the expression of proton conductivity for PA-doped PBI membranes given in the literature is modified to be suitable for commercial PBI membranes with high PA doping levels such as those used in Celtec® MEAs. Although the comparison between simulations and experiments shows a lack of agreement quantitatively, the model successfully captures the experimental trends, showing quantitative influence of inlet RH on membrane water flux, ohmic resistance, and cell performance during various HT-PEMFC operations.  相似文献   

4.
This paper presents a thermodynamic study of a glycerol steam reforming process, with the aim of determining the optimal hydrogen production conditions for low- and high-temperature proton exchange membrane fuel cells (LT-PEMFCs and HT-PEMFCs). The results show that for LT-PEMFCs, the optimal temperature and steam to glycerol molar ratio of the glycerol reforming process (consisting of a steam reformer and a water gas shift reactor) are 1000 K and 6, respectively; under these conditions, the maximum hydrogen yield was obtained. Increasing the steam to glycerol ratio over its optimal value insignificantly enhanced the performance of the fuel processor. For HT-PEMFCs, to keep the CO content of the reformate gas within a desired range, the steam reformer can be operated at lower temperatures; however, a high steam to glycerol ratio is required. This requirement results in an increase in the energy consumption for steam generation. To determine the optimal conditions of glycerol steam reforming for HT-PEMFC, both the hydrogen yield and energy requirements were taken into consideration. The operational boundary of the glycerol steam reformer was also explored as a basic tool to design the reforming process for HT-PEMFC.  相似文献   

5.
High temperature proton exchange membrane fuel cells (HT-PEMFCs) are proficient clean energy conversion devices for automotive and stationary applications. HT-PEMFC could mitigate the CO poisoning, humidity and heat management, and sluggish of oxygen reduction reaction (ORR). Acid doped polybenzimidazoles (PBIs)/functionalized PBIs polymer electrolyte membranes are familiar uses for HT-PEMFC because of high proton conductivity with thermo-mechanical stability. Proton conductivity of PBI membranes is greatly promising by acid doping dimension and cell operating temperature. PBI reactive sites (=NH) and acidic anions prominently contribute the proton transfer through the prolonged hydrogen bonding network. Coating and sprayed methods are prominent techniques for fabrication of gas diffusion electrodes (GDEs), although shrinkage and hairline surface cracks observed on GDEs. Multi walled carbon nanotubes (MWCNTs) has been compromising unique characteristics for steady carbon support materials. Moreover, PTFE and PVDF can be used as catalyst binder to reduce corrosion rate. In this review, it has been focused the PBIs membrane, acid doping, GDEs, MEA and durability of MEA.  相似文献   

6.
In this work, a high temperature proton exchange membrane fuel cell (HT-PEMFC) with stamped SS304 bipolar plates is successfully developed. Its performance was evaluated under two types of gaskets at different assembly torques and air stoichiometric ratios. The rates of pressure loss at a torque of 7 N-m with 50 Shore A hardness gaskets was 2.0 × 10?3 MPa min?1, which is acceptable. The best performance of the developed HT-PEMFC with stamped SS304 bipolar plates was 228.33 mW cm?2, which approaches the performance of HT-PEMFCs with graphite bipolar plates. The optimal air stoichiometric ratio for the HT-PEMFC with stamped SS304 bipolar plates was 4.0, which is higher than that for proton exchange membrane fuel cells with CNC milled graphite bipolar plates. This is probably because of the deformation of the flow channels under the assembly compression force, which causes an elevated gas-diffusion drag in the flow channels. After the test, it was observed that some products of corrosion reaction formed on the surface of the SS304 bipolar plate. This phenomenon may lead to a decrease in the operating life of the HT-PEMFC.  相似文献   

7.
Air-breathing high-temperature proton exchange membrane fuel cell (HT-PEMFC) gets rid of the cumbersome air supplying systems and avoids the water flooding problem by directly exposing the cathode to air and operating the fuel cell at elevated temperature. Performance of the air-breathing HT-PEMFC is dependent on many factors particularly the cathode flow field configurations. However, studies about air-breathing HT-PEMFCs are quite limited in the literature. In the present study, an experimental testing system was setup for the performance measurement of the air-breathing HT-PEMFC. A 3D numerical model was established and validated by the experimental data. Effects of the cathode flow field configurations including the opening shape, end plate thickness, open ratio and opening direction on performance of the air-breathing HT-PEMFC were experimentally and numerically investigated. It was found that the cathode end plate thickness and upward or sideways orientation have the least effect on the performance. The maximum power density of 160 mW/cm2 at the current density of 394 mA/cm2 can be achieved for the cathode flow field with slot holes and an open ratio of 75%.  相似文献   

8.
The performance of high-temperature PEM fuel cell (HT-PEMFC) is substantially influenced by physical parameters. In this work, the effects of three parameters on the performance of HT-PEMFC are studied by using a 3D model in COMSOL. The parameters are the operating temperature, membrane's thickness and catalyst layer's thickness. The polarization curves are adopted to analyze the effects on the performance. The results show that the increase of temperature can enhance the performance of fuel cell. For the effect of catalyst layer thickness, the cell performance is promoted as the catalyst layer's thickness decreases. For the effect of the thickness of membrane, it is found that the thinner membrane of fuel cell can achieve better performance. These findings can be further extended to guide the operation and design of HT-PEMFC in practical applications.  相似文献   

9.
This review brings out those aspects of the development of proton exchange membrane (PEM) fuel cells over the last two to three decades that are of interest to the heat and mass transfer community. Because the heat transport and mass transport in proton exchange membrane fuel cells are very important from the efficiency point of view, an emphasis is given here to these transports and their influence on operating cell parameters. The works are classified as models with either isothermal or non-isothermal conditions of various assumed dimensionality and with either single-phase or two-phase flow. Along with modeling, a few experimental studies available are also reported here. Researchers in the area of PEM fuel cells are involved in activities such as development of new and low-cost materials, modeling the relevant physical processes, and electrochemical experimentation. These collective efforts may lead to making this technology viable to meet world needs for clean and cheap energy. This review brings out the fact that computational fluid dynamics (CFD) has become an inevitable tool in fuel cell analysis, as the detailed interactions between the flow structure geometry, fluid dynamics, multiphase flow, heat transfer, mass transfer, and electrochemical reaction can be modeled simultaneously, given the present state of the art in CFD. Through the predictive capability of CFD, it will be possible for fuel cell designers to better optimize the design and operating parameters of fuel cells before testing them in laboratory.  相似文献   

10.
In this study, the effect of graphene nanoplatelet (GNP) and graphene oxide (GO) based carbon supports on polybenzimidazole (PBI) based high temperature proton exchange membrane fuel cells (HT-PEMFCs) performances were investigated. Pt/GNP and Pt/GO catalysts were synthesized by microwave assisted chemical reduction support. X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Brauner, Emmet and Teller (BET) analysis and high resolution transmission electron microscopy (HRTEM) were used to investigate the microstructure and morphology of the as-prepared catalysts. The electrochemical surface area (ESA) was studied by cyclic voltammetry (CV). The results showed deposition of smaller Pt nanoparticles with uniform distribution and higher ECSA for Pt/GNP compared to Pt/GO. The Pt/GNP and Pt/GO catalysts were tested in 25 cm2 active area single HT-PEMFC with H2/air at 160 °C without humidification. Performance evaluation in HT-PEMFC shows current densities of 0.28, 0.17 and 0.22 A/cm2 for the Pt/GNP, Pt/C and Pt/GO catalysts based MEAs at 160 °C, respectively. The maximum power density was obtained for MEA prepared by Pt/GNP catalyst with H2/Air dry reactant gases as 0.34, 0.40 and 0.46 W/cm2 at 160 °C, 175 °C and 190 °C, respectively. Graphene based catalyst supports exhibits an enhanced HT-PEMFC performance in both low and high current density regions. The results indicate the graphene catalyst support could be utilized as the catalyst support for HT-PEMFC application.  相似文献   

11.
Durability of polymer exchange membrane (PEM) fuel cells under a wide range of operational conditions has been generally identified as one of the top technical gaps that need to be overcome for the acceptance of this fuel cell technology as a commercially viable power source, especially for automotive and portable applications. In this study, a 1200 h lifetime test was conducted with a six-cell PEM fuel cell stack under close to open-circuit conditions. In situ measurements of the hydrogen crossover rate through the membrane, high frequency resistance and electrochemically active surface area of each single cell, in combination with cell polarization curves, were used to investigate the degradation mechanisms. Direct gas mass spectrometry of the cathode exhaust gas indicated the formation of HF, H2O2 and CO2 during the durability testing. The overall cell degradation rate under this accelerated stress testing is approximately 0.128 mV h−1. The cell degradation rate for the first 800 h is much lower than that after 800 h, which may result from the dominance of different degradation mechanisms. For the first period, the degradation of fuel cell performance was mainly attributed to catalyst decay, while the subsequent dramatic degradation is likely caused by membrane failure.  相似文献   

12.
Polymer electrolyte membrane (PEM) fuel cells are considered a promising technology for generating power with water as a byproduct. Recently, sulfonated poly(arylene ether sulfone) (SPAES) has emerged as a most suitable alternative for PEM applications because of its high proton conductivity, high CO tolerance, and low fuel crossover. However, the existing SPAES polymeric membrane materials have poor chemical reactivity, mechanical processability, and thermal usability. Thus, the effects of mixing inorganic nanomaterials with SPAES polymers on proton conductivity, power density, fuel crossover, thermal and chemical stability, and durability are discussed in this review. Further, the progress in preparation methods and fuel cell characteristics by the addition of silica, clay, heteropolyacids (HPA), and carbon nanotubes (CNTs) in polymer membrane materials for PEM applications is also discussed.  相似文献   

13.
This paper reviews publications in the literature on performance degradation of and mitigation strategies for polymer electrolyte membrane (PEM) fuel cells. Durability is one of the characteristics most necessary for PEM fuel cells to be accepted as a viable product. In this paper, a literature-based analysis has been carried out in an attempt to achieve a unified definition of PEM fuel cell lifetime for cells operated either at a steady state or at various accelerated conditions. Additionally, the dependence of PEM fuel cell durability on different operating conditions is analyzed. Durability studies of the individual components of a PEM fuel cell are introduced, and various degradation mechanisms are examined. Following this analysis, the emphasis of this review shifts to applicable strategies for alleviating the degradation rate of each component. The lifetime of a PEM fuel cell as a function of operating conditions, component materials, and degradation mechanisms is then established. Lastly, this paper summarizes accelerated stress testing methods and protocols for various components, in an attempt to prevent the prolonged test periods and high costs associated with real lifetime tests.  相似文献   

14.
Polymer electrolyte membrane (PEM) fuel cells, which convert the chemical energy stored in hydrogen fuel directly and efficiently to electrical energy with water as the only byproduct, have the potential to reduce our energy use, pollutant emissions, and dependence on fossil fuels. Great deal of efforts has been made in the past, particularly during the last couple of decades or so, to advance the PEM fuel cell technology and fundamental research. Factors such as durability and cost still remain as the major barriers to fuel cell commercialization. In the past two years, more than 35% cost reduction has been achieved in fuel cell fabrication, the current status of $61/kW (2009) for transportation fuel cell is still over 50% higher than the target of the US Department of Energy (DOE), i.e. $30/kW by 2015, in order to compete with the conventional technology of internal-combustion engines. In addition, a lifetime of ∼2500 h (for transportation PEM fuel cells) was achieved in 2009, yet still needs to be doubled to meet the DOE’s target, i.e. 5000 h. Breakthroughs are urgently needed to overcome these barriers. In this regard, fundamental studies play an important and indeed critical role. Issues such as water and heat management, and new material development remain the focus of fuel-cell performance improvement and cost reduction. Previous reviews mostly focus on one aspect, either a specific fuel cell application or a particular area of fuel cell research. The objective of this review is three folds: (1) to present the latest status of PEM fuel cell technology development and applications in the transportation, stationary, and portable/micro power generation sectors through an overview of the state-of-the-art and most recent technical progress; (2) to describe the need for fundamental research in this field and fill the gap of addressing the role of fundamental research in fuel cell technology; and (3) to outline major challenges in fuel cell technology development and the needs for fundamental research for the near future and prior to fuel cell commercialization.  相似文献   

15.
Transient power demand fluctuations and maintaining high energy density are important for many portable devices. Small fuel cells are potentially good candidates as alternative energy sources for portable applications. Hybrid power sources have some inherent properties which may be effectively utilized to improve the efficiency and dynamic response of the system. In this paper, an improved dynamic model considering the characteristics of the temperature and equivalent internal resistance is presented for proton exchange membrane (PEM) fuel cells. The dynamic behavior of a system with hybrid PEM fuel cells and an ultracapacitor bank is simulated. The hybrid PEM fuel cell/ultracapacitor bank system is used for powering a portable device (such as a laptop computer). The power requirement of a laptop computer varies significantly under different operation conditions. The analytical models of the hybrid system with PEM fuel cells and an ultracapacitor bank are designed and simulated by developing a detailed simulation software using Matlab, Simulink and SimPowerSystems Blockset for portable applications.  相似文献   

16.
The unreliable durability of high temperature proton exchange membrane fuel cells (HT-PEMFCs) is one of the restriction factors upon the commercialization process. In this paper, 600-h accelerated stress tests (ASTs) were performed on HT-PEMFCs to investigate the performance degradation under start/stop, load cycling (0.2–0.8 A cm?2 and 0.04–0.2 A cm?2) conditions. The activation, ohmic and mass transport polarization losses were determined in combination with the electrochemical impedance spectroscopy (EIS) and Tafel slope analysis, and the degradation modes such as carbon corrosion, catalyst degradation, acid loss and membrane degradation were analyzed by linear sweep voltammetry (LSV), cyclic voltammetry (CV) and transmission electron microscopy (TEM) characterization. The polarization curves of ASTs show that load cycling between 0.04 and 0.2 A cm?2 extensively aggravates performance degradation, indicating that high-potential operation has the greatest detrimental impact on the durability. By comparing the changes of the activation, ohmic and mass transport polarization losses, it can be found that the activation polarization is the dominant factor leading to performance degradation in the 600-h test, and the ohmic polarization has little effect on the performance degradation. After the test at load cycling between 0.2 and 0.8 A cm?2, the membrane is seriously degraded and the ohmic resistance increases significantly, and the severe acid loss becomes critical issue in the long-term durability of HT-PEMFC.  相似文献   

17.
The polymer electrolyte membrane (PEM) fuel cell is a promising candidate as zero-emission power source for transport and stationary cogeneration applications due to its high efficiency, low-temperature operation, high power density, fast start-up, and system robustness. Bipolar plate is a vital component of PEM fuel cells, which supplies fuel and oxidant to reactive sites, removes reaction products, collects produced current and provides mechanical support for the cells in the stack. Bipolar plates constitute more than 60% of the weight and 30% of the total cost in a fuel cell stack. For this reason, the weight, volume and cost of the fuel cell stack can be reduced significantly by improving layout configuration of flow field and use of lightweight materials. Different combinations of materials, flow-field layouts and fabrication techniques have been developed for these plates to achieve aforementioned functions efficiently, with the aim of obtaining high performance and economic advantages. The present paper presents a comprehensive review of the flow-field layouts developed by different companies and research groups and the pros and cons associated with these designs.  相似文献   

18.
In this paper, a numerical model of high-temperature proton exchange membrane fuel cell (HT-PEMFC) was developed, in which the thermal and electrical properties were treated as temperature dependent. Based on the numerical simulation, the needed training data was acquired and used for the development of data-driven model via the artificial neural network (ANN) algorithm. The developed data-driven model was then used to predict the performance of HT-PEMFC. The simulation results indicated that the deviation of ANN prediction was less than 2.48% compared with numerical simulation. The effects of various influential factors, such as the geometry size of the gas flow channel, the thickness of the membrane and the operating temperature, could be predicted easily by using the ANN model. The ANN model prediction results showed that the more compact fuel cell and the higher operating temperature improved the performance of HT-PEMFC. The proposed ANN model and the parameters study will contribute to the further design and operation of HT-PEMFC.  相似文献   

19.
A gas crossover model is developed for a high temperature proton exchange membrane fuel cell (HT-PEMFC) with a phosphoric acid-doped polybenzimidazole membrane. The model considers dissolution of reactants into electrolyte phase in the catalyst layers and subsequent crossover of reactant gases through the membrane. Furthermore, the model accounts for a mixed potential on the cathode side resulting from hydrogen crossover and hydrogen/oxygen catalytic combustion on the anode side due to oxygen crossover, which were overlooked in the HT-PEMFC modeling works in the literature. Numerical simulations are carried out to investigate the effects of gas crossover on HT-PEMFC performance by varying three critical parameters, i.e. operating current density, operating temperature and gas crossover diffusivity to approximate the membrane degradation. The numerical results indicate that the effect of gas crossover on HT-PEMFC performance is insignificant in a fresh membrane. However, as the membrane is degraded and hence gas crossover diffusivities are raised, the model predicts non-uniform reactant and current density distributions as well as lower cell performance. In addition, the thermal analysis demonstrates that the amount of heat generated due to hydrogen/oxygen catalytic combustion is not appreciable compared to total waste heat released during HT-PEMFC operations.  相似文献   

20.
Heteropoly acids have been employed to increase the proton conductivity of phosphoric acid (PA) doped polymer membranes for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). In this work, we develop a new composite membrane based on phosphotungstic acid (PWA) doped polyethersulfone-polyvinylpyrrolidone (PES-PVP) matrix, forming PWA/PES-PVP composite membrane for HT-PEMFCs. The homogeneous distribution of PWA on the PES-PVP membrane enhances its mechanical strength. In addition, there is a strong interaction between PWA and PA that is confirmed experimentally by the attenuated total reflectance Fourier Transform Infrared spectroscopy and semi-empirical quantum mechanics calculation. This enhances not only the PA uptake but also the proton conductivity of the PWA/PES-PVP composite membrane. 1H nuclear magnetic resonance spectroscopy results elucidate that the high proton conductivity of the PA doped PWA/PES-PVP membranes is due to their higher proton content and mobility compared to the pristine PA doped PES-PVP membrane. The best results are observed on the PES-PVP composite membrane with addition of 5 wt% PWA, reaching proton conductivity of 1.44 × 10?1 S cm?1 and a peak power density of 416 mW cm?2 at 160 °C and anhydrous conditions. PWA additives increase the proton conductivity and cell performance, demonstrating significantly positive effects on the acid-base composite membranes for high temperature polymer electrolyte membrane fuel cell applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号