首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 49 毫秒
1.
根据支持向量回归机原理,针对样本特征对回归预测重要性的差异,采用最小二乘支持向量回归机(LS-SVR)算法,减少参数数量,针对参数对预测效果的影响,并考虑到特征加权的意义,采用特征指数进行加权,其权重系数由灰色关联度确定,提出了基于特征指数加权的最小二乘支持向量回归机算法。为验证该算法的有效性,对实际股票价格进行预测,结果表明该算法较传统最小二乘支持向量回归机算法,其回归估计函数的预测能力明显提高,具有一定的实用价值。  相似文献   

2.
基于特征加权的支持向量回归机研究   总被引:3,自引:0,他引:3  
基于统计学习理论的支持向量回归机有比较好的泛化能力,然而当样本含有与该问题不完全相关甚至完全无关的特征时,会使得各个特征对问题的相关程度差异很大,从而使得支持向量回归机的效果受到影响。为了解决这个问题,提出了一种基于特征加权的支持向量回归机。模拟的计算结果显示出此方法的有效性。  相似文献   

3.
基于多特征结合与加权支持向量机的图像去噪方法   总被引:1,自引:0,他引:1  
付燕  宁宁 《计算机应用》2011,31(8):2217-2220
在基于支持向量机(SVM)的图像去噪方法的基础上,提出了一种基于多特征结合与加权SVM的图像去噪方法。首先,根据图像中相邻像素的相关性及椒盐噪声的特点,提取含噪图像中的多种特征;然后,利用针对不平衡数据集所改进的加权SVM分类器,识别出含噪图像中的噪声点,再利用支持向量回归机(SVR)对噪声点的原始灰度值进行回归预测;最后,重构图像以达到去噪的目的。实验结果表明,该方法能提高SVM分类器对噪声点的识别率,改善分类器的性能,并能在去噪的同时较好地保留图像的边缘信息,获得较高的峰值信噪比(PSNR)。  相似文献   

4.
王浩  王行愚  牛玉刚 《计算机仿真》2006,23(7):111-114,145
在加权回归型支持向量机中,由于考虑到不同数据对预测函数贡献程度的差异性,其预测效果往往优于标准的回归型支持向量机,该文针对现有回归型加权支持向量机使用中直接选择加权系数法存在的不足,提出了一种对加权系数进行优化的新方法。该方法通过选取曲率变化大、形式简单的幂函数作为候选加权函数,并采用格子搜索法寻找最优参数,从而可以确定出最优加权系数。仿真实验表明:在利用加权支持向量机训练时间序列数据集时,采用该方法确定最优加权系数,比目前常用选择加权系数的方法效果好。  相似文献   

5.
支持向量机(SVM)是近年来发展起来的一种通用的机器学习方法,在小样本数据的拟合中已获得了很好的效果。对于常见的支持向量回归机方法:ε-支持向量回归机和最小二乘支持向量回归机进行了归纳总结,并给出了一具体应用案例。  相似文献   

6.
函数拟合通常要在有限的训练样本下对函数变量之间的关系做出预测,在实践中由于训练样本有限,并且训练样本本身存在噪音和孤立点,用传统的方法进行函数拟合的结果往往不能满足要求.本文主要利用最小二乘支持向量机对函数进行拟合.首先介绍了最小二乘支持向量机的工作原理,并对参数选择方法进行了研究,然后通过仿真实验对利用最小二乘支持向量机进行函数拟合的效果加以对比说明.  相似文献   

7.
基于支持向量机的分解合作的加权算法及其应用   总被引:2,自引:0,他引:2  
支持向量机是基于统计学习理论的新一代学习机器。它使用结构风险最小化原则,运用核技巧,较好地解决了学习问题。当训练数据相当大时,其训练速度是制约其应用的瓶颈。本文提出了一种基于支持向量机的分解合作的加权算法并将其应用于股票指数预测,与标准算法相比较,分解合作加权算法表现出了良好的性能。  相似文献   

8.
电力负荷预测是近年研究的热点话题,因受温度、湿度、自然灾害等因素影响,准确预测相当困难。为此,通过引入历史观察数据的权重、改进支持向量回归预测模型和参数的智能选取,克服影响电力负荷的随机因素的影响,运用AdaBoost算法提升加权支持向量回归预测能力,提高预测精度。通过仿真建模,对真实的电力负荷数据进行预测实验,结果表明所提的方法比单个SVR模型和神经网络BP模型的预测精度高,稳定性好。  相似文献   

9.
灰色局部支持向量回归机及应用   总被引:1,自引:0,他引:1  
蒋辉  王志忠 《控制与决策》2010,25(3):399-403
为了解决全局支持向量回归机(Global-SVR)在大样本数据集中计算效率低下的问题,将局部支持向量回归机与灰色系统理论有机结合,并利用灰色关联度作为局部邻域函数构造灰色局部支持向量回归机(GL-SVR),该做法具有一定的理论价值.优化过程中采用留一法评估学习机的泛化性能,利用模式搜索法选择模型参数.真实的股价涨跌幅预测实验结果表明,该方法既加快了运算速度,又提高了预测精度.  相似文献   

10.
田浩兵  朱嘉钢  陆晓 《计算机科学》2015,42(6):239-242, 246
粗糙one-class支持向量机(ROCSVM)是一种一类支持向量机,它通过核函数映射,定义上近似超平面和下近似超平面,使得训练样本能根据在粗糙间隔中的位置,自适应地对决策超平面产生影响.由于ROCSVM训练集只有正类样本,因此充分挖掘和利用训练样本的分类特征对于提高ROCSVM的分类性能有重要意义.为此,提出了一种基于训练样本分类特征贡献度的加权高斯核函数(λRBF):先对训练样本做主成分分析(PCA)得到按特征值排序的向量集,以此向量集构造核函数,使得特征值较大的维度在核函数中起较大的作用.在UCI标准数据集和仿真数据上的实验结果表明:与一般RBF的ROCSVM相比,基于λ-RBF的ROCSVM有着更好的泛化性和更高的识别率.  相似文献   

11.
针对凸轮磨削加工过程中存在局部升程误差严重超差的问题,提出了加权支持向量机的凸轮升程误差补偿方法。首先根据圆率的符号判断凸轮升程误差值是否连续,然后建立了不连续点与相邻点之间夹角与加权值的关系。通过加权支持向量机对凸轮升程误差值进行拟合。然后将原始凸轮升程值减去经拟合后的凸轮升程误差值,获得新的凸轮升程值。再根据圆率自动调整加权值的系数,使凸轮升程值光滑点数最大,即获得最优的凸轮升程值。对上述算法进行仿真和编程,经YTM8336-16数控凸轮轴磨床进行磨削验证。实验表明,凸轮升程误差由原来的±0.059 mm降至±0.011 mm,表面粗糙度由Ra0.32μm降至Ra0.25μm,获得良好的效果。  相似文献   

12.
针对实际中存在的各类别样本错分造成不同危害程度的分类问题,提出了一种基于属性加权的代价敏感支持向量机分类算法,即在计算各个样本特征属性对分类的重要度之后,对相应的属性进行重要度加权,所得的数据用于训练和测试代价敏感支持向量机。数值实验的结果表明,该方法提高了误分代价高的类别的分类精度,同时属性重要度的引入提高了分类器的整体分类性能。该方法对错分代价不对称的数据分类问题具有重要的现实意义。  相似文献   

13.
在网络入侵检测中,数据类别不均衡训练集的使用将产生分类偏差,主要原因在于对每个训练样本的错误分类的惩罚系数是相等的.加权支持向量机对每个错误分类样本的惩罚系数是不一样的,这对小样本来说提高了分类精度,克服了常规SVM算法不能灵活处理样本的缺陷.但这是以大样本分类精度的降低以及总分类精度的下降为代价的.实验结果证明,将加权支持向量机用于网络入侵检测中是可行的、高效的.  相似文献   

14.
陈乐 《计算机工程与设计》2012,33(12):4769-4773
短期电力负荷预测中,针对维数比较高、各影响因素差异大、随机误差差异性大等问题,提出一种基于加权相似度和加权支持向量机的模型。首先,通过主成分分析得到负荷数据的综合因子,利用灰色关联分析分析综合因子与各影响因素的关系,计算各个影响因素的权重;其次依据权重采用加权相似度公式获得相似日,即样本数据;最后,针对相似日,采用加权支持向量回归机进行建模,实现对短期电力负荷进行预测。实验结果表明了该方法的有效性。  相似文献   

15.
基于主动学习的加权支持向量机的分类   总被引:1,自引:1,他引:0  
用支持向量机SVM进行分类时,针对在某些机器学习中,存在训练样本获取代价过大,且训练样本中类的数量不对称的问题,提出了基于主动学习策略的加权支持向量机.其在机器学习的进程中,每次从候选样本集中,主动选择最有利于改善分类器性能的n个新样本添加到训练样本中进行学习,引入类权重因子和样本权重因子,将惩罚参数与类权重因子和样本权重因子联系.实验结果表明,该方法能够有效减少训练样本数量,解决类的数量不对称的样本产生的最优分界面偏移的问题,使分类器获得较好的分类性能.  相似文献   

16.
针对航空发动机振动监控异常样本少的问题,用单类支持向量机建立了一种振动异常检测模型,在仅对正常数据进行训练的基础上便可以进行发动机振动异常检测工作.根据近期数据的重要性要大于早期数据的重要性这一特性,提出加权单类支持向量机算法,为不同架次的样本赋予不同的权系数.实验分析结果表明了检测模型的有效性.  相似文献   

17.
基于加权近似支持向量机的文本分类研究   总被引:1,自引:1,他引:1  
文本分类能够很好地帮助用户整理、获取信息,在提高信息检索的速度和准确率方面显得意义重大,具有很重要的研究价值.针对以往的近似支持向量机没有考虑不均衡数据的情况,提出了通过对每个训练错误赋予一个权值来改进近似支持向量机,并给出了一种简单的参数估计方法.实验结果表明,基于加权近似支持向量机的分类算法在处理不均衡数据时,样本数少的类别分类精度得到提高,性能表现良好.  相似文献   

18.
对空调负荷进行准确预测不仅对空调优化控制的意义重大,而且也是实现空调经济运行与节能的关键所在。为了提高建筑空调负荷的预测精度,在分析灰色模型和支持向量机建模特点基础上提出了一种空调负荷组合预测算法。该方法综合了灰色建模计算过程简单以及支持向量机自学习和泛化能力强的优点,能够更加有效地利用样本数据的有效信息,提高模型预测精度。首先,通过灰色建模过程弱化了样本数据的随机因素。然后,对灰色模型输出进行归一化处理及数据重构,以作为支持向量机的输入。最后,通过支持向量机模型的预测得到最终预测结果。将本文所提出的方法应用于福州一栋办公建筑的逐时空调负荷预测中,并与灰色模型及支持向量机模型作比较,证明了组合模型的预测值与实际运行值拟合度最高,平均绝对误差比灰色模型和支持向量机模型分别降低了47.84%和17.39%。该组合预测模型具有较高的预测精度和更好的泛化能力,具有较强的可行性和实用性。  相似文献   

19.
针对水下无线传感器网络锚节点较少、迭代误差大导致的节点定位精度低的问题,提出一种基于改进加权最小二乘支持向量机的水下三维节点定位算法;该算法将水下三维空间分为若干立方体,以锚节点与网格交点的距离向量作为训练集进行训练;并利用改进的多类别模式识别方法进行分类,以未知节点到锚节点的距离向量作为测试集确定节点坐标;通过引入加权的思想和多类别模式识别方法增大机器学习算法的鲁棒性、降低分类次数,从而实现水下三维节点预测定位;仿真结果表明,该算法在锚节点较少、网络区域较大的水下仍能保持较高的定位精度与较好的鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号