共查询到20条相似文献,搜索用时 54 毫秒
1.
《计算机应用与软件》2013,(4)
提出一种改进的目标跟踪方法。将归一化系数的角点互匹配与Mean-shift相结合。当目标的一部分特征出现在背景中或目标与背景相似度较高时,Mean-shift算法的跟踪性能将会下降。针对这一问题,提出采用颜色特征和角点特征相融合,用归一化的角点互匹配算法,能有效降低误匹配率,提高匹配精度。在某些帧中,由于噪声、遮挡等干扰时,发生角点0匹配,这时采用Mean-shift算法作为临时替代跟踪器,并更新目标模版,以适应目标的旋转运动,当有角点恢复匹配时,重新进行角点匹配跟踪。 相似文献
2.
《计算机应用与软件》2016,(5)
针对传统粒子滤波目标跟踪算法在目标与背景颜色相似情况下目标定位偏差大、易导致丢失目标的缺陷,提出一种基于角点和颜色模型的粒子滤波目标跟踪算法。首先,提出一种改进SUSAN角点检测算法,采用圆形模板邻域内像素灰度值中值代替模板中心像素灰度值作为模板"核"来检测区域目标角点,其改进SUSAN角点算法在继承原有SUSAN算法计算简单、定位准确、具有旋转不变性等特点的同时,具有更好抗噪声性能;其次,利用HSV颜色模型光照不敏锐特性,对检测到的角点建立HSV颜色模型,并将其嵌入到粒子滤波框架中,实现对目标的跟踪。实验结果表明,当背景与目标颜色相近时,该算法能够有效避免背景对目标的干扰,取得了较好的目标跟踪性能。 相似文献
3.
一种改进的基于Harris的角点检测方法 总被引:5,自引:2,他引:5
在研究Harris角点检测算法时发现该算法对一些图像进行角点提取时,存在提取伪角点、角点信息丢失和位置偏移,而且在进行非极大值抑制时不易设置阈值等现象.提出了在进行非极大值抑制时采用双阈值法,分别设置一个相对大和一个相对小的两个阈值,从而得到同一图像不同阈值的角点信息,通过角点信息对比能够很好地解决角点信息丢失和位置偏移并能消除一部分伪角点,然后利用SUSAN的思想消除剩余的伪角点.通过对比实验表明,文中算法提取角点非常有效,比Harris算法具有更好的角点检测性能. 相似文献
4.
程磊 《数字社区&智能家居》2010,6(7):1684-1685,1688
针对背景动态变化的场景,提出了一种基于全方位视觉的运动目标检测跟踪方法。通过目标在HSV颜色空间中的H值、目标间的欧氏距离和目标相交面积等特征融合,提高目标跟踪的鲁棒性。实验表明,所设计的方法能实现实时准确的运动目标检测与跟踪。 相似文献
5.
针对传统SUSAN算子只能在单一尺度下检测图像中角点的不足,提出一种基于高斯变换的多尺度SUSAN角点检测方法。该方法利用高斯变换获得待检测图像的多尺度分层图像,以构建高斯金字塔,结合自适应阈值的SUSAN算子检测出不同尺度下的角点作为候选角点,将其还原到原始图像中的相应位置构成候选角点集,在候选角点集中经小邻域信息筛选获得最终角点。实验结果表明,该方法不仅能够在不同尺度下有效获取有用的角点信息,而且提高SUSAN算子正确率的同时,降低了角点的伪检率。 相似文献
6.
7.
为了提高经典的Mean Shift算法在复杂场景中的跟踪性能,提出了一种基于角点的目标表示方法。首先,利用Harris角点检测算法提取表示目标主要特征的角点;其次,基于提取的角点,建立目标模型,将其嵌入Mean Shift算法进行跟踪。该方法仅用少量的关键点表示目标,能够自动去除目标和背景中的次要特征,有效地抑制背景成分对目标定位的影响,从而改进Mean Shift目标跟踪算法的性能。通过测试两个复杂环境下的视频,实验结果表明,相对于传统的目标跟踪算法,提出的方法取得了更好的性能。 相似文献
8.
为了有效地解决目标颜色与背景颜色区分度较低而引起的目标定位不准确的问题,提出了一种改进的运动目标跟踪算法。该算法利用Harris-mean shift跟踪算法进行目标搜索,然后根据目标已知位置信息采用最小二乘法得到目标在下一帧中的位置,最终实现目标跟踪。实验证明该算法能够有效地提高跟踪的准确性和实时性。 相似文献
9.
基于SUSAN算法的角点检测 总被引:2,自引:0,他引:2
角点是图像目标的重要的局部特征,角点检测是低层次图像处理的一个重要方法。介绍SUSAN算法的原理,介绍该算法在角点检测中的应用,对实验结果进行了比较,并对该算法进行评价,给出评价角点检测算法的标准。 相似文献
10.
基于角点的监控摄像头干扰检测 总被引:1,自引:0,他引:1
提出一种新的实时检测摄像头干扰的方法,建立一种基于最小核值相似区SUSAN(Smallest Univalve Segment AssimilatingNucleus)角点的图像特征函数,由于干扰发生时相对的几帧图像与正常图像相比会发生显著变化,因此通过比较图像的特征函数值来检测干扰的发生。利用一种逻辑判断方法做到对突变和渐变干扰的全面检测,并且避免对无害行为的误检,使之更具鲁棒性。对比已有的方法,分别对不同场景及不同类型的摄像头遮挡和转动干扰进行了多组测试,实验结果显示,该方法明显优于其它算法,能够很好地检测出对摄像头的遮挡及转动干扰,并且很好地避免了对无害行为的误检。 相似文献
11.
针对基于单一颜色信息的目标分割算法易受光线因素影响的问题,提出一种颜色及深度信息融合进行前景分割的目标实时检测方法。采用Kinect传感器采集低成本深度(RGB-D)图像,利用改进的ViBe算法及多帧差分法分别对于RGB以及深度图像进行建模。前景分割后,利用选取基准(SC)融合策略优化目标结果,然后通过rg Chromaticity颜色模型计算前景区域直方图信息并与模板匹配完成目标标记。实验结果表明,该方法对于环境光线及噪声干扰具有一定的鲁棒性,对于ViBe算法中背景前景同色误检及“鬼影”现象,对于深度图像分割中前景背景距离过近而造成误检现象都有很好的识别效果。 相似文献
12.
现有跟踪算法大都需要构建复杂的外观模型、抽取大量训练样本来实现精确的目标跟踪,会产生庞大的计算量,不利于实时跟踪。鉴于此,提出了一种多通道核相关滤波的实时跟踪方法。首先,利用核化岭回归方法对视频帧的目标信息进行训练,学习得到滤波模板;接着,用滤波模板对待检测帧的可能区域进行相关性度量;最后,将相关度最高的位置作为跟踪结果,并通过对多通道的独立输入进行加权求和,解决多通道输入问题。与现有跟踪方法的大量对比实验表明,在不同的挑战因素下,该方法在保证跟踪精度的同时,跟踪速度也存在明显优势。该方法通过相关滤波的方式可避免抽取大量样本,并利用频域的点乘代替时域的相关运算,大大降低了计算复杂度,使跟踪速度完全满足实时场景的跟踪需求。 相似文献
13.
现有目标检测算法主要以图像中的大目标作为研究对象,针对小目标的研究比较少且存在检测精确度低、无法满足实时性要求的问题,基于此,提出一种基于深度学习目标检测框架PVANet的实时小目标检测方法。首先,构建一个专用于小目标检测的基准数据集,它包含的目标在一幅图像中的占比非常小且存在截断、遮挡等干扰,可以更好地评估小目标检测方法的优劣;其次,结合区域建议网络(RPN)提出一种生成高质量小目标候选框的方法以提高算法的检测精确度和速度;选用step和inv两种新的学习率策略以改善模型性能,进一步提升检测精确度。在构建的小目标数据集上,相比原PVANet算法平均检测精确度提高了10.67%,速度提升了约30%。实验结果表明,该方法是一个有效的小目标检测算法,达到了实时检测的效果。 相似文献
14.
The tracking speed and accuracy are two most important parameters for a target tracking system. In our study, the proposed
target tracking algorithm combines the Harris method and the optical flow method. To improve the tracking speed, the Harris
method is initially used to extract some target corner features, and the optical flow method is then used to more accurately
match corner features for the subsequent video frames. When the tracked target is rotated or distorted, the barycenter algorithm
is employed to compute the barycenter of those matched features of target. To meet the real-time-tracking requirement, a small-zone
image searching method and a high speed digital signal processing system are also designed. Our experimental study shows that
the method described in this paper has high accuracy of target tracking, and can be applied to the situations of rotated,
distorted, and/or shielded targets, although it has a limitation that it is only suitable for smaller targets. 相似文献
15.
目的 判别式目标跟踪算法在解决模型漂移问题时通常都是在预测结果的基础上构建更可靠的样本或采用更健壮的分类器,从而忽略了高效简洁的置信度判别环节。为此,提出高置信度互补学习的实时目标跟踪算法(HCCL-Staple)。方法 将置信度评估问题转化为子模型下独立进行的置信度计算与互补判别,对相关滤波模型计算输出的平均峰值相关能量(APCE),结合最大响应值进行可靠性判定,当二者均以一定比例大于历史均值时,判定为可靠并进行更新,将颜色概率模型的输出通过阈值处理转化为二值图像,并基于二值图像形态学提取像素级连通分量属性(PCCP),综合考虑连通分量数量、最大连通分量面积及矩形度进行可靠性判别,当置信度参数多数呈高置信度形态时,判定为可靠,进行更新;否则,判定为不可靠,降低该模型的融合权重并停止更新。结果 在数据集OTB-2015上的实验结果表明,HCCL-Staple算法与原算法相比,距离精度提高了3.2%,成功率提高了2.7%,跟踪速度为32.849帧/s,在颜色特征适应性较弱的场景和目标被遮挡的复杂场景中均能有效防止模型漂移,与当前各类主流的跟踪算法相比具有较好的跟踪效果。结论 两种子模型的置信度判别方法均能针对可能产生低置信度结果的敏感场景进行有效估计,且对输出形式相同的其他模型在置信度判别上具有一定的适用性。互补使用上述判别策略的HCCL-Staple算法能够有效防止模型漂移,保持高速的同时显著提升跟踪精度。 相似文献
16.
机器人的视觉伺服是机器人领域重要的研究方向.着力于提高机器人视觉反馈系统的实时性,提出了基于运动分析的的运动目标实时跟踪方法.该方法采用形态学方法标记连通域,并基于最小二乘法拟合运动轨迹曲线,预测下一时刻位置,设定连通域搜索范围,从而提高搜索速度.仿真结果表明:该方法处理效果良好,能满足后续系统实时性要求. 相似文献
17.
为了有效提取视频监控场景中的前景目标信息并准确跟踪目标的状态,提出一种基于混合高斯模型和Rao-Blackwellized蒙特卡洛数据关联的视频多目标跟踪方法。该方法根据场景中像素点的特征信息,利用混合高斯模型进行建模,并对前景目标进行检测,使用Rao-Blackwellized蒙特卡洛数据关联算法来降低可能的目标交叉及杂波干扰带来的影响,通过设置目标存在和消失参数,实现了实时多目标跟踪。实验结果表明,该方法不仅能对场景中未知目标的个数进行有效估计,而且可以准确地跟踪目标的状态,取得了良好的实际效果。 相似文献
18.
19.
现实中目标在被长期跟踪时容易发生形变、遮挡、光照干扰以及其它问题,现有跟踪算法虽能解决该系列问题但算法计算量巨大导致跟踪系统实时性能较差,很难应用于实际场合。因此准确快速跟踪目标成为近年来非常有挑战的热点课题。以国外学者Zdenek Kalal等人提出的TLD(Tracking-Learning-Detection)框架为基础,提出了三点改进方法。一根据目标所占整幅图像的面积大小动态调整被处理图像的分辨率,从总体上减少样本数量;二在目标邻近区域扫描生成样本,缩小检测器的检测范围;三更换检测部分中分类器模板匹配方法,实现快速匹配,提高算法运行速度。针对与不同的场景,实验表明上述问题在改进后的算法中得到了较大的改善,算法的计算量有效降低,系统运行速度得到提高。且对于实时摄像头监控,改进后算法在保证目标跟踪准确率的同时拥有较好的实时性。 相似文献
20.
在贝叶斯推理框架下,基于稀疏表示的跟踪算法能够较好地处理目标在视频场景中的各种复杂的外观变化,取得较为鲁棒的跟踪效果,但算法的计算复杂度很高,很难满足实时性要求。针对稀疏跟踪算法的这一问题,提出了一种基于l2范数最小化的实时目标跟踪算法。将PCA子空间目标表示与l2范数最小化进行结合,去除稀疏跟踪算法中常用的琐碎模板集,建立了基于l2范数最小化的目标表示模型以及将遮挡等因素考虑在内的观测似然度函数。在大量的实验测试集上的对比实验结果显示,该算法和多个非常优秀的跟踪算法相比,可以达到相同甚至更高的跟踪精度,而且在多个测试集上可以达到每秒20帧的速度。该算法可以很好地应对视频监控场景中遮挡、光线突变、尺度变化和非刚性形变等干扰,同时算法复杂度低,满足了实时要求。 相似文献