首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An averaging procedure for the Navier–Stokes equations has been proposed in an earlier article [I. Moise, R.M. Temam, Renormalization group method. Application to Navier–Stokes Equation, Discrete Contin. Dyn. Syst. 6 (1) (2000) 191–210]. This averaging procedure is based on a two-level decomposition of the solution into low and high frequencies. The aim of the present article is to investigate, with the help of numerical simulations, the behavior of the small scales of the corresponding system. Space-periodic solutions with a non-resonant period are considered. The time evolution of the averaged and standard (non-averaged) small scales are compared at different Reynolds numbers and for different values of the cut-off level used to separate large and small scales of the flow variables. The numerical results illustrate the efficiency of the proposed averaging procedure for the Navier–Stokes equations. The averaged small scales provide an accurate prediction of the time-averaged small scales of the Navier–Stokes solutions. As the computational cost is reduced for the averaged equations, long time integrations on more than 50 eddy-turnover times have been performed for cut-off levels ensuring a proper resolution of the large scales. In these cases, development of instabilities in the averaged small scale equation is observed.  相似文献   

2.
The numerical method for computing inviscid supersonic flow around the front part of the arbitrary planform wings was presented in [1,2]. The aim of this paper, which is the extension of the previous ones, is to present a numerical method for computing the flow field above the remaining parts of the wing—the wingtip section and the central section of the wing. Here the problems are formulated for a three-dimensional steady gas-dynamic system of equations written in special curvilinear coordinates. Complicated physical domains of the solution are mapped on simple computational domains. For approximation of the differential equations the finite-difference second-order implicit schemes are used. The approximation of the wing surfaces is made with the help of the local cubic splines. According to the obtained algorithms calculations were made for the wing with elliptical planform and thick airfoil at M = 2 and M = 3.5 with the angle of attack α = 5°.  相似文献   

3.
The GPG-stability of Runge-Kutta methods for the numerical solutions of the systems of delay differential equations is considered. The stability behaviour of implicit Runge-Kutta methods (IRK) is analyzed for the solution of the system of linear test equations with multiple delay terms. After an establishment of a sufficient condition for asymptotic stability of the solutions of the system, a criterion of numerical stability of IRK with the Lagrange interpolation process is given for any stepsize of the method.  相似文献   

4.
In this paper, we consider a numerical technique which enables us to verify the existence of solutions for the elasto-plastic torsion problems governed by the variational inequality. Based upon the finite element approximations and the explicit a priori error estimates for a simple problem, we present an effective verification procedure that through numerical computation generates a set which includes the exact solution. This paper is an extension of the previous paper [1] in which we mainly dealt with the obstacle problems, but some special techniques are utilized to verify the solutions for nondifferentiable nonlinear equations concerned with the present problem. A numerical example is illustrated.  相似文献   

5.
《国际计算机数学杂志》2012,89(6):1299-1314
The full discrete scheme of expanded mixed finite element approximation is introduced for nonlinear parabolic integro-differential equations modelling non-Fickian flow in porous media. To solve the nonlinear problem efficiently, a two-grid algorithm is considered and analysed. This approach allows us to perform all of the nonlinear iterations on a coarse grid space and just execute a linear system on a fine grid space. Based on RTk mixed element space, error estimates and convergence results are presented for solutions of the two-grid method. Some numerical examples are given to verify the theoretical predictions and show the efficiency of the two-grid method.  相似文献   

6.
In this paper, we propose a new method to present a fuzzy trapezoidal solution, namely “suitable solution”, for a fully fuzzy linear system (FFLS) based on solving two fully interval linear systems (FILSs) that are 1-cut and 0-cut of the related FILS. After some manipulations, two FILSs are transformed to 2n crisp linear equations and 4n crisp linear nonequations and n crisp nonlinear equations. Then, we propose a nonlinear programming problem (NLP) to computing simultaneous (synchronic) equations and nonequations. Moreover, we define two other new solutions namely, “fuzzy surrounding solution” and “fuzzy peripheral solution” for an FFLS. It is shown that the fuzzy surrounding solution is placed in a tolerable fuzzy solution set and the fuzzy peripheral solution is placed in a controllable fuzzy solution set. Finally, some numerical examples are given to illustrate the ability of the proposed methods.  相似文献   

7.
This paper proposes a split cosine scheme for simulating solitary solutions of the sine-Gordon equation in two dimensions, as it arises, for instance, in rectangular large-area Josephson junctions. The dispersive nonlinear partial differential equation allows for soliton-type solutions, a ubiquitous phenomenon in a large variety of physical problems. The semidiscretization approach first leads to a system of second-order nonlinear ordinary differential equations. The system is then approximated by a nonlinear recurrence relation which involves a cosine function. The numerical solution of the system is obtained via a further application of a sequential splitting in a linearly implicit manner that avoids solving the nonlinear scheme at each time step and allows an efficient implementation of the simulation in a locally one-dimensional fashion. The new method has potential applications in further multi-dimensional nonlinear wave simulations. Rigorous analysis is given for the numerical stability. Numerical demonstrations for colliding circular solitons are given.  相似文献   

8.
An idea of using a human-computer interactive program for an engineering design dealing with a nonlinear multisolution problem is introduced. The example shown is a program for a design of a drainage open channel. The hydraulics and geometry equations for triangular or trapezoidal ditches are to be satisfied by the ditch parameters, which are the side slopes (SL and SR), the depth (d) and the width of the bottom (Wb). The data are the flow rate (Q) and maximum allowable flow velocity. After Wb and one of the slopes for a nonsymmetrical ditch (SL) are chosen by the designer, the other slope and d may be found as a solution of two nonlinear algebraic equations. Instead of trying to solve these equations, the program displays the two curves in s-d coordinate system. If the curves intersect, the designer types in the coordinates of the point of intersection. Otherwise, new curves for decreased velocity are displayed as the indicated key is pressed. The procedure may be continued until the curves intersect. The final parameters chosen by the designer are checked by the program to verify that the actual flow rate and velocity are within the required limits.  相似文献   

9.
We present a second-order analytic solution to the nonlinear depth-integrated shallow water equations for free-surface oscillatory wind-driven flow in an idealized lake. Expressing the solution as an asymptotic expansion in the dimensionless wave amplitude (ζ/h), which is considered to be a small parameter, enables simplification of the governing equations and permits the use of a perturbation approach to solve them.This analytic solution provides a benchmark for testing numerical models. In particular, the main merit of this solution is that it accounts for advective effects, which are typically omitted from analytic solutions of two-dimensional free surface flow. In order to retain these effects in an analytic solution, we restrict our attention to forcing from a monochromatic wind stress, consider a constant depth rectangular lake, and simplify the governing equations by omitting the Coriolis and eddy viscosity terms and using a linearised friction factor. As such, the analytic solution is of limited use for considering real world problems. Due to the complexity of the analytic solution computer code for this solution is available online.Our solution is valid for cases where changes in the water surface level are small compared with the depth of the lake, and the advective terms in the momentum equations are small compared with acceleration terms. We examine the validity of these assumptions for three test cases, and compare the second-order analytic solution to numerical results to verify an existing hydrodynamic model.  相似文献   

10.
A. Makroglou 《Computing》1993,51(1):61-77
In this paper nonlinear Volterra integro-differential equations are considered with kernels of the formP(x,s,y(s)) andK(x,s,y(x),y(s)) and extended backward differentiation methods are applied as extended from their introduction for the solution of ordinary differential equations by Cash [4]. An error bound is obtained and a rate of convergence is found and validated by testing the method on some examples. The numerical results are compared with those obtained by applying standard backward differentiation and collocation methods.  相似文献   

11.
《国际计算机数学杂志》2012,89(9):1971-1989
A new method is proposed for numerical solution of Fredholm and Volterra integro-differential equations of second kind. The proposed method is based on Haar wavelets approximation. Special characteristics of Haar wavelets approximation has been used in the derivation of this method. The new method is the extension of the recent work [Aziz and Siraj-ul-Islam, New algorithms for numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math. 239 (2013), pp. 333–345] from integral equations to integro-differential equations. The method is specifically derived for nonlinear problems. Two new algorithms are also proposed based on this new method, one each for numerical solution of Fredholm and Volterra integro-differential equations. The proposed algorithms are generic and are applicable to all types of both nonlinear Fredholm and Volterra integro-differential equations of second kind. The cost of the new algorithms is considerably reduced by using the Broyden's method instead of Newton's method for solution of system of nonlinear equations. Most of the numerical methods designed for solution of integro-differential equations rely on some other technique for numerical integration. The advantage of our method is that it does not use numerical integration. The integrand is approximated using Haar wavelets approximation and then exact integration is performed. The method is tested on number of problems and numerical results are compared with existing methods in the literature. The numerical results indicate that accuracy of the obtained solutions is reasonably high even when the number of collocation points is small.  相似文献   

12.
Since most turbulent flows cannot be computed directly from the incompressible Navier-Stokes equations, a dynamically less complex mathematical formulation is sought. In the quest for such a formulation, we consider nonlinear approximations of the convective term that preserve the symmetry and conservation properties. In particularly, the energy, enstrophy (in 2D) and helicity are conserved. The underlying idea is to restrain the convective production of small scales in an unconditional stable manner, meaning that the approximate solution cannot blow up in the energy-norm (in 2D also: enstrophy-norm). The numerical algorithm used to solve the governing equations preserves the symmetry and conservation properties too. The resulting simulation method is successfully tested for a turbulent channel flow (Reτ = 180 and 395).  相似文献   

13.
In this paper, we study a local discontinuous Galerkin (LDG) method to approximate solutions of a doubly nonlinear diffusion equation, known in the literature as the diffusive wave approximation of the shallow water equations (DSW). This equation arises in shallow water flow models when special assumptions are used to simplify the shallow water equations and contains as particular cases: the Porous Medium equation and the parabolic p-Laplacian. Continuous in time a priori error estimates are established between the approximate solutions obtained using the proposed LDG method and weak solutions to the DSW equation under physically consistent assumptions. The results of numerical experiments in 2D are presented to verify the numerical accuracy of the method, and to show the qualitative properties of water flow captured by the DSW equation, when used as a model to simulate an idealized dam break problem with vegetation.  相似文献   

14.
We develop a numerical solution algorithm of the nonlinear potential flow equations with the nonlinear free surface boundary condition.A finite difference method with a predictor-corrector method is applied to solve the nonlinear potential flow equations in a two-dimensional (2D) tank.The irregular tank is mapped onto a fixed square domain with rectangular cells through a proper mapping function.A staggered mesh system is adopted in a 2D tank to capture the wave elevation of the transient fluid.The finite difference method with a predictor-corrector scheme is applied to discretize the nonlinear dynamic boundary condition and nonlinear kinematic boundary condition.We present the numerical results of wave elevations from small to large amplitude waves with free oscillation motion,and the numerical solutions of wave elevation with horizontal excited motion.The beating period and the nonlinear phenomenon are very clear.The numerical solutions agree well with the analytical solutions and previously published results.  相似文献   

15.
It is shown that for problems involving rate constitutive equations, such as rate-independent elastoplasticity, the notion of consistency between the tangent (stiffness) operator and the integration algorithm employed in the solution of the incremental problem, plays a crucial role in preserving the quadratic rate of asymptotic convergence of iterative solution schemes based upon Newton's method. Within the framework of closest-point-projection algorithms, a methodology is presented whereby tangent operators consistent with this class of algorithms may be systematically developed. To wit, associative J2 flow rules with general nonlinear kinematic and isotropic hardening rules, as well as a class of non-associative flow rules are considered. The resulting iterative solution scheme preserves the asymptotic quadratic convergence characteristic of Newton's method, whereas use of the socalled elastoplastic tangent in conjunction with a radial return integration algorithm, a procedure often employed, results in Newton type of algorithms with suboptimal rate of convergence. Application is made to a set of numerical examples which include saturation hardening laws of exponential type.  相似文献   

16.
Despite the advances in computer power and numerical algorithms over the last decades, solutions to unsteady flow problems remain computing time intensive. Especially for high Reynolds number flows, nonlinear multigrid, which is commonly used to solve the nonlinear systems of equations, converges slowly. The stiffness induced by the high-aspect ratio cells and turbulence is not tackled well by this solution method.In this paper, it is investigated if a Jacobian-free Newton-Krylov (jfnk) solution method can speed up unsteady flow computations at high Reynolds numbers. Preconditioning of the linear systems that arise after Newton linearization is commonly performed with matrix-free preconditioners or approximate factorizations based on crude approximations of the Jacobian. Approximate factorizations based on a Jacobian that matches the target residual operator are unpopular because these preconditioners consume a large amount of memory and can suffer from robustness issues. However, these preconditioners remain appealing because they closely resemble A-1.In this paper, it is shown that a jfnk solution method with an approximate factorization preconditioner based on a Jacobian that approximately matches the target residual operator enables a speed up of a factor 2.5-12 over nonlinear multigrid for two-dimensional high Reynolds number flows. The solution method performs equally well as nonlinear multigrid for three-dimensional laminar problems. A modest memory consumption is achieved with partly lumping the Jacobian before constructing the approximate factorization preconditioner, whereas robustness is ensured with enhanced diagonal dominance.  相似文献   

17.
The nonlinear, mixed elliptic hyperbolic equation describing a steady transonic flow is considered. The original equation is replaced by a system of first-order equations that are hyperbolic in time and defined in terms of velocity components. Parabolic regularization terms are added to capture shock wave solutions and to damp iterative solution algorithms. A finite element Galerkin method in space and a Crank-Nicolson finite difference method in iterative time are used to reduce the problem to the solution of a system of algebraic equations. Stability and convergence characteristics of the iterative method are discussed. The numerical implementation of the method is explained, and numerical results are presented.  相似文献   

18.
Systems of nonlinear equations governed by more than one parameter are discussed with particular attention to bifurcation behaviour. The procedure adopted is to add to the original system of n equations (m − 1) further equations, in the case of m parameters, and to seek solution curves in Rn+m to this augmented system. Two types of additional equations are considered: one describes a piecewise linear path in the space of parameters, and the second constrains the solution curve to be a locus of singular points. These ideas are all subsequently applied to the systems of equations arising from finite element approximations of boundary value problems in nonlinear elasticity. The behaviour of a nonlinear elastic thick-walled cylinder subjected to internal pressure and axial extension is discussed.  相似文献   

19.

A numerical simulation for mixed convective three-dimensional slip flow of water-based nanofluids with temperature jump boundary condition is presented. The flow is caused by nonlinear stretching surface. Conservation of energy equation involves the radiation heat flux term. Applied transverse magnetic effect of variable kind is also incorporated. Suitable nonlinear similarity transformations are used to reduce the governing equations into a set of self-similar equations. The subsequent equations are solved numerically by using shooting method. The solutions for the velocity and temperature distributions are computed for several values of flow pertinent parameters. Further, the numerical values for skin-friction coefficients and Nusselt number in respect of different nanoparticles are tabulated. A comparison between our numerical and already existing results has also been made. It is found that the velocity and thermal slip boundary condition showed a significant effect on momentum and thermal boundary layer thickness at the wall. The presence of nanoparticles stabilizes the thermal boundary layer growth.

  相似文献   

20.
A numerical investigation has been conducted to explore the steady nonlinear low Prandtl number flow/thermal transition in a differentially heated cubic cavity. For small values of Rayleigh number (Ra), it is observed that initially there was only one symmetric steady-state solution. When the Ra was amplified, the system bifurcates from one fixed-point solution to the two stationary solutions, namely, Mode I and Mode II pitchfork bifurcations. This is due to the symmetric nature existing along the vertical and diagonal planes. The flow structure in the present nonlinear system consists of a pair of asymmetric counter-rotating helical cells in a double helix structure, foliated with invariant helically symmetric surfaces containing the fibre-like fluid particle orbits. Also the evolution of different symmetry-breaking orientations on the transverse and diagonal planes of the cavity was noticed. In the Mode I orientation a symmetric vortex coreline was observed. However, in the Mode II orientation a pair of anti-symmetric vortex corelines was observed. Detailed topological study was made based on the rule of Hunt and the structural stability criteria. Also the simulated results were corroborated with numerical evidence. The existence of the critical Ra values was ascertained with the aid of the predicted L2-error norms, thermal/flow iso-contours and streamlines. The route of Mode I orientation was made of the alternate symmetric and asymmetric flows as Ra was augmented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号