首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以LiOH·H2O、MnSO4·H2O和NiSO4·6H2O等为原料,采用水热法合成尖晶石LiNi0.5Mn1.5O4材料.利用扫描电子显微镜、粉末X-射线衍射仪、电化学测试分别对材料形貌、结构和电化学性能进行表征.研究加入不同锂量和热处理对尖晶石LiNi0.5Mn1.5O4材料的初始容量、放电平台以及循环性能的影响.结果表明:经过850℃热处理所合成的材料分布均匀、结晶和电化学性能良好.当LiOH溶液为0.162 g·mL-1时,尖晶石LiNi0.5Mn1.5O4材料在1 C倍率电流(140 mAh g-1)条件下,首次放电比容量为111.0 mAh·g-1.且该样品的循环性能优越:经150充放电循环后的容量衰减率仅为4.5%.  相似文献   

2.
采用草酸共沉淀法合成了锂离子正极材料LiNi0.4Mn0.4Co0.2O2。用XRD、SEM和充放电实验对合成产物的结构、形貌和电化学性能进行了表征;用DSC对合成产物在不同充电状态下的热稳定性进行了研究。结果表明,采用草酸共沉淀法合成的正极材料LiNi0.4Mn0.4Co0.2O2具有α-NaFeO2型层状结构,阳离子有序度高,粒度均匀适中,电化学性能良好,首次放电比容量达到158.7 mAh/g,30次循环后放电比容量还有144.8 mAh/g;过充电状态下具有良好的热稳定性。  相似文献   

3.
采用共沉淀法对LiNi0.8Co0.2O2进行Mn元素的掺杂改性,考察不同掺杂量对LiNi0.8Co0.2O2材料的结构和电化学性能的影响,并对LiNi0.8-xMnxCo0.2O2(0≤x≤3)进行X射线衍射和扫描电镜分析以及循环伏安测试。充放电测试结果显示:未掺杂Mn的LiNi0.8Co0.2O2材料的初始放电比容量为164.32 mAh/g,50次循环以后为161.86 mAh/g。经掺Mn后LiNi0.8Co0.2O2材料的初始放电比容量为163.13 mAh/g,并且50次循环以后还能保持在162.33 mAh/g左右,效率达到99%以上。研究表明,掺Mn后的LiNi0.8Co0.2O2材料具有更加稳定的层状结构,并且其循环性能得到很大程度的提高。  相似文献   

4.
采用共沉淀法和成LiNi0.8Co0.2O2,探讨影响锂离子电池正极材料LiNi0.8Co0.2O2电化学性能及结构的因素.为了提高材料的电化学性能,对材料进行了掺杂改性的研究,分别掺入Al、Mn、Mg和Fe四种元素.通过在2.8~4.2V范围内的充放电测试分析,掺入Mn的正极材料LiNi0.8Co0.1Mn0.1O2具有最高的放电比容量以及最低的容量损失,其首次放电容量为168.84 mAh/g,十次循环后的放电容量为166.9 mAh/g.  相似文献   

5.
以LiNi1/3Co1/3Mn1/3O2为正极材料,采用共沉淀合成方法制备LaF3表面修饰LiNi1/3Co1/3Mn1/3O2正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明:经过LaF3表面修饰的LiNi1/3Co1/3Mn1/3O2材料保持了LiNi1/3Co1/3Mn1/3O2层状结构,其中LaF3表面修饰量为0.59%时,在电压为2.75~4.50V范围内,以0.3mA/cm2电流密度下经恒电流充放电测试,其首次放电比容量为172.7mAh/g,经过50周充放电循环后放电比容量为163.5mAh/g,表现出较高的初始放电比容量和良好的抗过充电性能。  相似文献   

6.
以氢氧化铝溶胶为前驱体在LiNi0.5 Mn1.5 O4正极材料表面制备尖晶石结构γ-Al2 O3包覆层,借助XRD、SEM、TEM及电化学方法对电极材料的主要性能进行了研究。结果表明:LiNi0.5 Mn1.5 O4表面γ-Al2 O3包覆层形成条件为600℃下煅烧0.5 h,较佳包覆量约为3%(摩尔比);γ-Al2 O3包覆层形貌完整,厚度约为5~10 nm,(311)晶面间距约0.24 nm;γ-Al2O3包覆的LiNi0.5Mn1.5O4正极材料30周充放电循环(0.2 C)后的比容量为112.1 mAh/g,4 C倍率下的比容量为82.0 mAh/g,容量保持率较基体分别提高了约10%和17.2%。因此,γ-Al2 O3包覆层减小了LiNi0.5 Mn1.5 O4与电解液的接触,有效抑制了基体与电解液之间的副反应,其电化学反应可逆性、循环稳定性及倍率性能得到了提高,有望用作动力锂离子电池正极材料。  相似文献   

7.
在共沉淀法合成Ni0.4Co0.2Mn0.4(OH)2的基础上制备了锂离子电池正极材料LiNi0.4Co0.2Mn0.4O2.通过XRD,SEM和电化学测试对不同反应温度下LiNi0.4Co0.2Mn0.4O2正极材料的结构、形貌及电化学性能进行了测试和表征.测试表明随着反应温度的提高,c/a和I(003)/I(104)值也在增加,表明温度的升高可以减少锂镍离子的混排,使层状结构更加完整,进而电化学性能也更优异.900℃下反应所得到的样品,以0.2C放电,其首次放电容量为148.3mAh/g,库伦效率最高可达9.8%.循环40个周期后容量保持率为93.9%,具有较好的电化学性能.  相似文献   

8.
以LiNi1/3CO1/3Mn1/302为正极材料,采用共沉淀合成方法制备LaF3表面修饰LiNimCo1/3Mnm02正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明:经过LaF3表面修饰的LiNi1/3C01/3Mn1/302材料保持了LiNi1/3Co1/3Mn1/302层状结构,其中LaFs表面修饰量为0.59%时,在电压为2.75-4.50V范围内,以0.3mA/cm。电流密度下经恒电流充放电测试,其首次放电比容量为172.7mAh/g,经过50周充放电循环后放电比容量为163.5mAh/g,表现出较高的初始放电比容量和良好的抗过充电性能。  相似文献   

9.
采用X射线衍射仪、电池测试系统等,研究了采用Pechini法合成的锂离子电池正极材料LiCexNdxMn2-2xO4(x=0、0.012、0.014、0.016、0.018)的组织结构、首次充放电性能、循环稳定性能等。结果表明:当稀土元素掺入量较少(x≤0.014)时,样品由尖晶石型LiMn2O4相组成,否则,样品中将出现微量的杂质相(CeO2、Nd2O3);适量的稀土元素掺杂将使LiMn2O4样品的初始容量减小、循环稳定性能增加。LiCe0.014Nd0.014Mn1.972O4样品具有较好的循环稳定性能,其初始放电容量为124.8 mAh/g,经30次循环充放电后的容量保持在116.3 mAh/g,容量保持率为93.2%。  相似文献   

10.
采用溶胶-凝胶法合成钠离子电池正极材料Na(Fe1/3Ni1/3Mn1/3)O2,通过扫描电镜、充放电测试等方法,对Na(Fe1/3Ni1/3Mn1/3)O2材料的表面形貌以及电化学性能进行研究,并探索络合剂柠檬酸用量对材料电化学性能的影响.结果表明:当柠檬酸与该材料中过渡金属总摩尔比为1∶1时,合成的Na(Fe1/3Ni1/3Mn1/3)O2材料晶粒分散均匀,粒径均一,颗粒大小约为0.5μm.电化学性能测试表明该产物具有高的放电比容量、优良的循环性能和倍率性能.在10 m A/g的电流密度下首次放电比容量为132.2 m Ah/g,25次循环之后容量仍能达到112.2 m Ah/g,容量保持率达到84.9%.在1 C的放电倍率下,其放电比容量仍能达到84.1 m Ah/g.  相似文献   

11.
以LiNO3、Al(NO3)3.9H2O、Co(NO3)2.6H2O和球形Ni(OH)2为原料,采用熔盐包裹法在空气中合成了LiNi0.8-xCo0.2AlxO2.采用XRD、SEM和电池性能测试仪研究了合成产物的结构、形貌和电化学性能.考察了合成温度、合成时间、掺铝量和锂过量对合成产物结构的影响.实验表明,采用熔盐包裹法在空气中合成的LiNi0.8-xCo0.2AlxO2具有α-NaFeO2型层状有序结构和球状形貌,并具有良好的电化学性能,其中LiNi0.7Co0.2Al0.1O2的最大放电比容量达到157.7 mAh/g.在空气中合成LiNi0.8-xCo0.2AlxO2的最佳工艺条件为合成温度750℃,合成时间16 h,锂过量10%(摩尔分数).  相似文献   

12.
溶胶-凝胶法所制LiCoPO_4及其掺碳材料的电化学性能   总被引:1,自引:1,他引:0  
采用溶胶-凝胶法制备了LiCoPO4,并对LiCoPO4进行了掺碳改性研究。实验结果表明:n(Li)∶n(Co)=1.5∶16,50℃下煅烧8 h所得样品性能最佳。在0.1C倍率下,样品的首次充电比容量为135.17 mAh·g^-1,首次放电比容量是113.9 mAh·g^-1,其电化学性能较好。合成掺碳15%的LiCoPO4/C复合材料,在0.1C条件下放电比容量达到121.2 mAh·g^-1,相比纯相LiCoPO4 113.9 mAh·g^-1有很大提高。在1C倍率下复合材料的放电比容量是103.5 mAh·g^-1,相比纯相85.4 mAh·g^-1提高很多,20次循环后复合材料还保持有62.3 mAh·g^-1的放电比容量。碳掺杂不仅提高了材料的电导率,还提高了材料的电化学性能。  相似文献   

13.
以LiOH.H2O和Mn(CH3COO)2.2H2O为原料,用微波烧结和固相烧结相结合合成了尖晶石型Li4Mn5O12正极材料.XRD分析、DTA分析、循环伏安和充放电实验表明,先用300W的微波烧结30min,然后再用380℃后处理48 h可获得具有纯Li4Mn5O12物相的样品.该样品的初始放电容量为176mAh/g,40循环的放电容量为123 mAh/g.  相似文献   

14.
采用固相烧结法,以LiOH、FeC2O4.2H2O、Nb2O5、正硅酸四乙酯和蔗糖为原料制备出单斜结构的Li2.05FexNb2(1-x)/3SiO4/C(x=1,0.99,0.98,0.96,0.94,0.92,0.90)系列样品.通过红外光谱、X射线衍射、扫描电镜、恒电流充放电测试、交流阻抗和循环伏安法等方法研究了制备样品的结构及电化学性能.实验结果表明,颗粒尺寸介于0.2~1.5μm之间的Li2.05Fe0.96Nb0.026 7SiO4/C的充放电性能最好,在0.3C倍率电流下,第1次循环的放电容量为116.6 mAh/g,第30循环的放电容量为78.3 mAh/g.掺铌减少了样品的电荷传递阻抗,提高了锂离子的扩散系数.  相似文献   

15.
采用X射线衍射仪、电池测试系统等,研究了采用Pechini法合成的锂离子电池正极材料LiCexNdxMn2-2xO4(x=0、0.012、0.014、0.016、0.018)的组织结构、首次充放电性能、循环稳定性能等。结果表明:当稀土元素掺入量较少(x≤0.014)时,样品由尖晶石型LiMn2O4相组成,否则,样品中将出现微量的杂质相(CeO2、Nd2O3);适量的稀土元素掺杂将使LiMn2O4样品的初始容量减小、循环稳定性能增加。LiCe0.014Nd0.014Mn1.972O4样品具有较好的循环稳定性能,其初始放电容量为124.8 mAh/g,经30次循环充放电后的容量保持在116.3 mAh/g,容量保持率为93.2%。  相似文献   

16.
以LiOH·H2O和MnCO3为原料,采用两段固相法制备了亚微米级大小的尖晶石型Li4Mn5O12正极材料.通过充放电测试、X射线衍射、扫描电镜等现代实验方法研究了合成温度对材料的电化学性能的影响.研究表明:500℃烧结制备的样品表现出最佳的电化学性能.在0.2 C倍率电流条件下,第1循环和第30循环的放电容量分别为143.5 mAh·g-1和143.9 mAh·g-1;在2 C倍率电流下,样品的第1循环和第50循环的放电容量分别为109.2 mAh·g-1和126.1 mAh·g-1.  相似文献   

17.
以Li2CO3和TiO2为原料,以乙醇为分散剂,采用高温固相方法合成Li4Ti5O12锂离子电池负极材料,利用XRD、SEM和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行了表征。系统考察了热处理温度对Li4Ti5O12负极材料结构及电化学性能的影响,同时也研究了锂的投料量对Li4Ti5O12电化学性能的影响。在1.0~2.2 V(vs.Li/Li+)范围内,以0.1 mA/cm2的电流密度对最佳工艺条件下合成的Li4Ti5O12负极材料进行了恒电流充放电测试。其首次放电比容量为167 mAh/g,经过30周充放电循环后放电比容量几乎没有衰减,表现出较大的初始放电比容量和良好的循环性能。  相似文献   

18.
采用溶胶-凝胶法合成了LiCoPO4与钇掺杂的正极材料,并研究了该材料的晶型结构、充放电以及循环性能。试验表明:少量Y3+掺杂不影响LiCoPO4的晶格结构;合成的改性正极材料Li0.99Y0.01CoPO4在0.1C倍率下首次放电比容量达到123.0 mAh/g,相比纯相LiCoPO4提高了8%,20次循环后Li0.99Y0.01CoPO4的放电比容量是78.6 mAh/g,改性材料在电化学性能上得到较大提升。  相似文献   

19.
采用燃烧法,在不通入惰性气体保护的环境下,合成了Mg2+ 、Zr4+掺杂的磷酸铁锂(LiFePO4)正极材料. 通过X射线衍射、傅立叶变换红外光谱、扫描电子显微镜、恒电流充放电循环技术,对材料的结构和电化学性能(放电性能、循环性能)进行表征. 结果表明,Mg2+ 、Zr4+的掺入没有改变材料的橄榄石型结构,但显著改善了材料的电化学性能,其中Zr4+掺杂的LiFePO4具有更高的放电比容量,在0.2 C放电倍率下最高达到143.4 mAh/g,且循环性能良好(经50次循环后放电比容量为126.3 mAh/g).  相似文献   

20.
基于不同碳源的LiFePO4/C的合成及电化学性能研究   总被引:3,自引:0,他引:3  
以不同有机碳(月桂酸、葡萄糖和柠檬酸)为碳源合成了橄榄石型LiFePO4/C锂离子电池复合正极材料.研究了不同碳源对LiFePO4/C复合材料的结构、形貌及其电化学性能的影响.结果表明用不同碳源合成的LiFePO4/C复合材料的形貌及颗粒大小不同,影响其电化学性能.其中以葡萄糖作为碳源合成的复合正极材料粒径细小,分布均匀,具有最好的电化学性能,在0.1 C放电电流下,首次放电比容量达143.1 mAh/g,接近LiFePO4的理论比容量(170 mAh/g).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号