共查询到20条相似文献,搜索用时 0 毫秒
1.
Effective bias removal for fringe projection profilometry using the dual-tree complex wavelet transform 总被引:1,自引:0,他引:1
When reconstructing the three-dimensional (3D) object height profile using the fringe projection profilometry (FPP) technique, the light intensity reflected from the object surface can yield abruptly changing bias in the captured fringe image, which leads to severe reconstruction error. The traditional approach tries to remove the bias by suppressing the zero spectrum of the fringe image. It is based on the assumption that the aliasing between the frequency spectrum of the bias, which is around the zero frequency, and the frequency spectrum of the fringe is negligible. This, however, is not the case in practice. In this paper, we propose a novel (to our knowledge) technique to eliminate the bias in the fringe image using the dual-tree complex wavelet transform (DT-CWT). The new approach successfully identifies the features of bias, fringe, and noise in the DT-CWT domain, which allows the bias to be effectively extracted from a noisy fringe image. Experimental results show that the proposed algorithm is superior to the traditional methods and facilitates accurate reconstruction of objects' 3D models. 相似文献
2.
很多小波去噪方法认为小波系数是相互独立的,然而大量实验表明实际图像的小波系数之间是有较强的依赖性。在本文中,我们将利用复小波变换的优势以及小波系数之间的依赖性,提出一种新的图像去噪方法。该方法先确定滤波器系数,再对复小波变换系数建模,并根据MAP准则给出系数的收缩方法进行去噪处理,最后作复小波逆变换。同时在变换的系数抽取之前估计系数的方差,可以使方差估计更准确。 相似文献
3.
针对传统包络谱和峭度图分析技术的缺陷,提出了一种基于双树复小波包峭度图的轴承故障诊断方法。该方法综合利用了双树复小波包变换和峭度图分析技术,克服了原峭度图方法只采用FIR和短时傅立叶变换滤波器的缺点,提高了从强噪声环境中提取瞬态冲击特征的能力。首先利用双树复小波包变换,将振动信号分解成不同频带的分量,然后计算各小波分量的谱峭度,再利用谱峭度的滤波器作用,计算最大峭度值对应分量信号的包络谱,根据包络谱就可识别齿轮箱轴承的故障部位和类型。齿轮箱轴承故障振动实验信号的研究结果表明:该方法不仅提高了信噪比和频带选择的正确性,而且能有效地识别轴承的故障。 相似文献
4.
Technical Physics Letters - We consider the task of increasing the quality of speech signal cleaning from additive noise by means of double-density dual-tree complex wavelet transform (DDCWT) as... 相似文献
5.
针对存在背景干扰和噪声情况下的红外图像弱小目标检测问题,提出了基于双树复小波变换和混沌粒子群优化的检测方法。该方法一方面先基于双树复小波变换对原始图像进行去噪,再利用Top-hat算子抑制背景;另一方面先利用Top-hat算子抑制原始图像的背景,经双树复小波去噪后,再进一步使用Top-hat算子。将上述两方面得到的图像求和即为预处理图像。然后基于混沌粒子群优化的类内绝对差及背景与目标面积差的阈值选取方法分割预处理图像。大量实验结果表明,与基于小波和形态学的红外目标检测方法相比,该方法抗噪性强,具有更为优越的检测性能。 相似文献
6.
Microarray imaging is considered an important tool for large scale analysis of gene expression. The accuracy of the gene expression depends on the experiment itself and further image processing. It's well known that the noises introduced during the experiment will greatly affect the accuracy of the gene expression. How to eliminate the effect of the noise constitutes a challenging problem in microarray analysis. Traditionally, statistical methods are used to estimate the noises while the microarray images are being processed. In this paper, we present a new approach to deal with the noise inherent in the microarray image processing procedure. That is, to denoise the image noises before further image processing using stationary wavelet transform (SWT). The time invariant characteristic of SWT is particularly useful in image denoising. The testing result on sample microarray images has shown an enhanced image quality. The results also show that it has a superior performance than conventional discrete wavelet transform and widely used adaptive Wiener filter in this procedure. 相似文献
7.
A new robust method of non-blind image watermarking is proposed in this paper. The suggested method is performed by modification
on singular value decomposition (SVD) of images in Complex Wavelet Transform (CWT) domain while CWT provides higher capacity
than the real wavelet domain. Modification of the appropriate sub-bands leads to a watermarking scheme which favourably preserves
the quality. The additional advantage of the proposed technique is its robustness against the most of common attacks. Analysis
and experimental results show much improved performance of the proposed method in comparison with the pure SVD-based as well
as hybrid methods (e.g. DWT-SVD as the recent best SVD-based scheme). 相似文献
8.
9.
基于小波变换的自适应图像融合算法 总被引:1,自引:0,他引:1
针对现有图像融合方法存在的光谱信息和空间细节信息不能较好兼顾的问题,建立了图像内容自适应的融合准则和一致性选取准则,提出了一种基于小波变换的自适应图像融合算法,实现了多光谱图像与全色图像的融合,并对融合图像进行了主、客观评价。着重从图像融合如何提高目标的区分度和识别率的角度给出主观评价,通过光谱扭曲度、清晰度客观分析多光谱与全色图像的融合效果。实验结果表明,该算法充分利用了全色图像的空间细节特征、图像边缘和方向性特征信息,保留了多光谱图像的光谱信息特征,提高了融合图像的主观效果,有利于信息的提取和目标解译。在光谱和空间细节综合保持方面,该算法优于IHS融合方法和传统的二进小波融合方法。 相似文献
10.
提出一种使用提升格形态小波进行生物芯片图像滤波增强的方法。根据生物芯片图像的样点和噪声区域的大小选择合适的结构元素或者预测-升级算子,并通过形态学算子或者提升格构造形态小波分解和重构形式。利用形态小波的不同级连方式和高频系数的处理实现生物芯片图像的滤波增强。实验表明,该方法可以有效地结合形态学和小波滤波的优势,降低了运算量,取得良好的生物芯片图像增强效果。 相似文献
11.
Bin Sun Weidan Zhu Chengwei Luo Kai Hu Yu Hu Jingjing Gao 《International journal of imaging systems and technology》2019,29(1):29-41
Source images are frequently corrupted by noise before fusion, which will lead to the quality decline of fused image and the inconvenience for subsequent observation. However, at present, most of the traditional medical image fusion scheme cannot be implemented in noisy environment. Besides, the existing fusion methods scarcely make full use of the dependencies between source images. In this research, a novel fusion algorithm based on the statistical properties of wavelet coefficients is proposed, which incorporates fusion and denoising simultaneously. In the proposed algorithm, the new saliency and matching measures are defined by two distributions: the marginal statistical distribution of single wavelet coefficient fit by the generalized Gaussian Distribution and joint distribution of dual source wavelet coefficients modeled by the anisotropic bivariate Laplacian model. Additionally, the bivariate shrinkage is introduced to develop a noise robust fusion method, and a moment-based parameter estimation applied in the fusion scheme is also exploited in denoising method, which allows to achieve the consistency of fusion and denoising. The experiments demonstrate that the proposed algorithm performs very well on both noisy and noise-free images from multimodal medical datasets (computerized tomography, magnetic resonance imaging, magnetic resonance angiography, etc.), outperforming the conventional methods in terms of both fusion quality and noise reduction. 相似文献
12.
13.
Image fusion is the concept to integrate multiple same scene images while drawing out maximum radiometric information from them by avoiding noise and fictional data. The main objective is to improve the radiometric quality of fused image compared to individual images of the same scene. Existing methods are found to be efficient, but if the similar radiometric information is fused into every image, it produces redundant high frequency of pixels. Therefore, to overcome this issue, in this paper a fuzzy and stationary discrete wavelet transform (FSDWT)-based image fusion technique is proposed. It decomposes Landsat image into stationary values, and then it preserves the radiometric data by using fuzzy if-then rules. In the last phase, FSDWT injects high-frequency blocks from input images and returns a single Landsat image with maximum radiometric data. Quantitative analysis has clearly demonstrated that FSDWT has better structural detail, spatial resolution and spectral information than existing methods. 相似文献
14.
15.
通过对亚像元理论的分析,对两帧错半个像元的遥感图像进行复小波插值,引入基于层间的小波自适应阈值方法去除噪声,并通过重构得到更高分辨率的遥感图像,同时,算法对遥感图像的复原效果好于常用的方法。 相似文献
16.
17.
Liangliang Li Yujuan Si Zhenhong Jia 《International journal of imaging systems and technology》2018,28(2):124-131
In this article, a novel brain image enhancement approach based on nonsubsampled contourlet transform (NSCT) is proposed. First, the image is decomposed into a low‐frequency component and several high‐frequency components by the NSCT; Second, the gamma correction is applied to deal with the low‐frequency sub‐band coefficients, and the adaptive threshold is used to remove the noise of the high‐frequency sub‐bands coefficients; Third, the inverse nonsubsampled contourlet transform is adopted to reconstruct the processed coefficients; Finally, the unsharp filter is used to enhance the reconstructed image. The experimental results demonstrate that the performance of the proposed method is superior to the state‐of‐the‐art algorithms in terms of brain image enhancement. 相似文献
18.
基于复小波变换的结构瞬时频率识别 总被引:6,自引:0,他引:6
对结构响应信号进行连续复Morlet小波变换,根据小波系数的模极大值提取小波脊线,识别结构的瞬时频率;为降低噪音的影响,采用奇异值分解(SVD)方法进行降噪处理,建立了一种基于连续复小波变换识别时变系统瞬时频率的方法.用一个具有时变刚度的弹簧质量系统的数值算例验证方法的有效性,随后设计了一个时变拉索结构试验,分别对索施加线性和正弦变化的拉力,同时测试结构的冲击响应,运用提出的方法成功地识别了索的瞬时频率.数值与试验结果表明,提出的方法能有效地识别时变结构的瞬时频率,且识别方法具有一定的抗噪性. 相似文献
19.
一种基于小波变换的多聚焦图像融合方法 总被引:11,自引:6,他引:11
提出了一种基于低频系数局部区域梯度信息的多分辨率图像融合方法。根据局部梯度信息对源图像的小波低频系数进行选择,获取融合图像的对应低频系数。依照平均误差、峰值信噪比、均方根误差以及偏差度、熵等评价标准,将该方法的多聚焦图像融合效果与其他三种常用低频系数融合方法的效果进行了比较。实验结果表明,该方法获得的大部分评价指标都优于其他三种方法,且其最佳小波分解层数为2层,而其他三种方法的最佳小波分解层数为5层。最佳小波分解层数越少,图像融合的计算量越小。该方法在减少计算量的同时,提高了融合质量。 相似文献
20.
摘 要 探讨了基于复Morlet小波变换的结构频率及阻尼比的识别方法,推导了基于小波变换系数的振型识别原理。为提高识别密集模态的精度,提出了基于最小标准差的小波中心频率及带宽的自适应选择方法。针对大跨空间结构具有低频密集模态以及难以实现用力锤或激振器来激励等特点,提出了自然激励法与小波变换相结合的模态参数识别方法。数值仿真及奥运场馆国家游泳中心现场实测数据分析表明,基于复Morlet小波变换的方法能有效识别低频密集模态参数。 相似文献