首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
运用Kissinger和Ozawa法采用非等温DSC对氢化双酚A型环氧树脂/甲基六氢苯酐体系的固化反动力学进行了研究,得到其固化反应活化能分别为41.28 kJ/mol和44.80 kJ/mol,起始固化温度T i,峰顶固化温度T p和终了固化温度T f分别为44.55℃,63.4℃和108.14℃。结果表明:2种方法计算得到活化能大小一致。随着升温速率的提高,T i,T p和T f都有提高。  相似文献   

2.
采用非等温示差法分析了碳纳米管改性酚醛固化反应过程,运用Kissinger和Ozawa法对其进行了动力学研究,得到了反应活化能。结果表明:碳纳米管改性PF树脂的固化反应为吸热反应;相应的峰始温度(Ti)为106.4℃,峰顶温度(Tp)为118.2℃,峰终温度(Tf)为157.6℃,固化体系的表观活化能Ea为111.094 kJ/mol,频率因子为9.56×10-5/s,反应级数为0.965,并得到了固化反应动力学方程。  相似文献   

3.
用差示扫描量热法(DSC)对混合型聚酯树脂进行固化动力学研究,确定了该体系的特征参数:起始固化温度(T0)、恒温固化温度(Tp)和后处理温度(Tf)分别为68℃、143℃、168℃。同时通过Kissinger以及Crane方程计算出该体系的固化反应表观活化能E为76.19 kJ/mol、反应级数n为0.913,指前因子A为4.35×108,确定了该体系的固化动力学方程。通过等温固化对该体系的研究得到了不同固化温度下转化率变化曲线,用非等温固化研究得到的动力学方程与等温固化得到的曲线进行比较研究,为优化混合型粉末涂料固化工艺提供了理论依据。  相似文献   

4.
以自制GO(氧化石墨烯)作为BCE(双酚A型氰酸酯)的改性剂制备相应的改性树脂。采用非等温DSC(差示扫描量热)法、Kissinger法、Crane法和升温速率-温度(β-T)外推法研究了GO对BCE固化动力学的影响,确定了纯BCE和GO/BCE体系的固化工艺条件和动力学参数。结果表明:纯BCE体系的凝胶温度为180.0℃、固化温度为201.0℃和后处理温度为221.1℃;GO/BCE体系的凝胶温度为158.8℃、固化温度为195.7℃和后处理温度为214.3℃;纯BCE和GO/BCE固化体系的活化能分别为102.38 kJ/mol和81.68 kJ/mol,反应级数分别为0.93和0.91。  相似文献   

5.
联苯酚醛环氧树脂固化动力学及热性能研究   总被引:1,自引:0,他引:1  
以4,4'-二氨基二苯砜(DDS)为固化剂,采用非等温示差扫描量热法(DSC)研究了联苯酚醛环氧树脂(BPNE)的固化动力学。通过外推法确定了体系的固化工艺。采用Kissinger、Ozawa法计算出固化体系的表观活化能,根据Crane理论计算得到该体系的固化反应级数。采用DSC,热重分析(TGA)研究了固化物的耐热性。结果表明:BPNE的固化工艺为160℃/2h+200℃/2h+230℃/2h;固化反应的活化能约为61.86kJ/mol,指前因子为5.27×105min-1,反应级数为1.1;玻璃化转变温度(Tg)为167℃,其10%热失重温度为398.1℃,800℃残炭率为29.37%,与双酚A环氧树脂/DDS固化物相比,分别提高了22℃,11.71%。  相似文献   

6.
采用非等温DSC(差示扫描量热)法对M-EPN(改性酚醛环氧树脂)与2PZ-PS(微胶囊固化剂)的固化反应过程进行了分析,得到了2PZ-PS的最佳掺量;然后运用Kissinger法、Ozawa法、Crane法和T-β(温度-升温速率)外推法,确定了固砂剂(由M-EPN和2PZ-PS所配制)的理论固化工艺和固化动力学参数。研究结果表明:当w(2PZ-PS)=23%(相对于固化体系质量而言)时,固砂剂能充分固化;该固砂剂具有良好的潜伏性能,并且固化反应可用1级固化动力学模型表征,而且其凝胶温度、固化温度和后处理温度分别为54.40、95.44、115.16℃,表观活化能、频率因子和反应级数分别为75.64 kJ/mol、9.37×10~9 min~(-1)和0.936。  相似文献   

7.
以腰果酚、甲醛和二乙烯三胺为原料通过曼尼希反应合成了腰果酚醛胺固化剂,通过红外光谱和凝胶渗透色谱分别对其化学结构和相对分子质量进行了分析,并研究了腰果酚醛胺固化剂对环氧树脂的固化动力学。结果表明:制备的腰果酚醛胺固化剂的数均、重均相对分子质量均在 1 250左右,且相对分子质量分布较窄。通过将非等温 DSC曲线数据拟合 Kissinger方程、 Ozawa方程、 Crane方程,得到环氧树脂 /二乙烯三胺固化体系表观活化能为 71. 40 kJ/mol,环氧树脂 /腰果酚醛胺固化剂的表观活化能低于前者为 56. 72 kJ/mol,固化反应级数没有变化,均为 0. 93。因此,相比于传统固化剂二乙烯三胺,腰果酚型酚醛胺能使得环氧树脂在更低的温度下,更快地进行固化,符合研究预期结果。  相似文献   

8.
高固含量聚醚醚酮改性酚醛树脂固化动力学研究   总被引:2,自引:0,他引:2  
采用溶液聚合法合成了高固含量(>80%)聚醚醚酮(PEEK)改性酚醛树脂(PF),用非等温DSC(差示扫描量热)法和T-β(温度-升温速率)外推法对其固化反应动力学过程进行了研究,并根据Kissinger方程、Ozawa方程和Crane方程等计算出该固化反应的动力学参数。结果表明:改性树脂的凝胶化温度为136.68℃,固化温度为167.16℃,后处理温度为197.39℃;其固化体系的表观活化能为100.02 kJ/mol,频率因子为1.84×106 s-1,反应级数为0.94(近似于1级反应)。  相似文献   

9.
2,4′-双酚S型EP/双氰胺体系固化动力学研究   总被引:1,自引:0,他引:1  
采用非等温DSC(差示扫描量热)法研究了2,4′-双酚S型EP(环氧树脂)/DICY(双氰胺)体系的固化动力学过程。运用Kissinger法、Ozawa法、Crane法和T-β(温度-升温速率)外推法等计算出该固化体系的动力学参数。研究结果表明:该固化体系的固化动力学可用1级固化动力学模型表征,其凝胶温度、固化温度和后处理温度分别为126.35、162.20、234.35℃,其表观活化能、频率因子和反应级数分别为83.00 kJ/mol、1.67×107s-1和0.932。  相似文献   

10.
采用非等温动态示差扫描量热法(DSC)和热失重分析法(TGA)研究了N,N,N',N'-四缩水甘油胺-4,4'-双[4-(4-氨基苯氧基)苯基]丙烷/甲基纳迪克酸酐/2-乙基-4-甲基咪唑(TGBAPP/MNA/EMI-24)体系的固化反应过程及固化物的热稳定性。由Kissinger方程和Ozawa方程求得该体系固化反应的表观活化能分别为65.4 kJ/mol和69.0 kJ/mol;由Crane方程求得固化反应近似为一级反应;TGBAPP/MNA/EMI-24体系固化物具有良好的耐热性能,其Tg为226℃,5%,15%和30%的热失重温度分别为312℃,344℃和397℃。  相似文献   

11.
赵明  杨明山 《广州化工》2009,37(4):69-71
研究了邻甲酚醛环氧树脂/苯代三聚氰胺酚醛树脂的固化反应机理,邻甲酚醛环氧树脂(o—CFER)被固化剂苯代三聚氰胺酚醛树脂(BPR)固化,采用非等温扫描方法研究环氧树脂固化反应,用来确定其固化反应动力学参数以及最佳固化工艺条件。用差示扫描量热仪(DSC)对邻甲酚醛环氧树脂固化体系的固化反应过程进行了分析。采用不同升温速率,用Kissinger方法求得体系固化反应的表观活化能△E=63.6kJ/mol,根据Crane理论计算得到该体系的固化反应级数n=0.899。固化反应起始温度、峰值温度、终止温度分别为Tio=102.95℃、Tpo=132.16℃、Tpf=166.6℃,为确定苯代三聚氰胺酚醛树脂作为固化剂的固化反应条件提供了一定的理论依据。  相似文献   

12.
以双酚芴、二甲基二氯硅烷、环氧氯丙烷为原料,合成了二甲基硅烷芴基环氧树脂(BMEBF),并利用FT IR、^1H NMR确认了产物结构,盐酸-丙酮法测定其环氧值为0.22。热重分析表明,BMEBF的初始分解温度达347.66℃,较环氧树脂E-51高89℃;在600℃时的残余质量分数也高出21个百分点。对二氨基二苯甲烷(DDM)-BMEBF固化体系的非等温固化动力学研究发现,根据Kissinger法及Ozawa法得到的该固化反应活化能分别为53.616 kJ/mol和57.980 kJ/mol,反应级数都接近1;BMEBF-DDM体系的固化温度为140-150℃,后固化温度为180-190℃。  相似文献   

13.
用示差扫描量热法(DSC)在动态条件下对CE2908聚酯/异氰尿酸三缩水甘油酯(TGIC)体系的固化反应动力学进行了研究。运用温度-升温速率图外推法确定了该体系的特征参数∶凝胶温度(T0)、固化温度(Tp)和后固化温度(Tf)分别为113℃、146℃和195℃。采用Kissinger方程和Crane方程计算CE2908聚酯/TGIC酯体系的动力学参数,平均表观活化能Ea为62.32 kJ/mol、频率因子A为8.50×106min-1、反应级数n为0.95。建立了该树脂体系的固化动力学模型。利用所建立的固化动力学方程分别讨论了等温和动态条件下CE2908聚酯/TGIC的固化反应特性,为优化聚酯/TGIC体系粉末涂料固化工艺提供了理论依据,并在生产工艺中验证了其正确性。  相似文献   

14.
以天然资源腰果酚合成了1种含有羟基的苯并恶嗪(CBozH),并利用红外光谱(FT-IR)及核磁共振光谱(1H-NMR和13C-NMR)表征了其化学结构。采用非等温示差扫描量热(DSC)法研究了CBozH的热固化反应过程,通过Kissinger方程、Crane方程和T-β外推法得到了该体系的固化反应温度及动力学参数。研究表明,CBozH的热固化反应表观活化能为85.47 kJ/mol,反应级数为0.909 4,凝胶温度为181℃,固化温度为217℃,后固化温度252℃。热重分析表明,CBozH开环聚合物(PCBozH)具有较好的热稳定性。  相似文献   

15.
环氧粉末涂料的固化动力学和固化工艺的研究   总被引:3,自引:2,他引:1  
采用非等温示差扫描量热法(DSC)研究了E-12/双氰胺(固化剂)和E-12/双氰胺/2-甲基咪唑(促进剂)体系的固化反应动力学。采用Kissinger法和Crane公式对DSC数据进行处理,获得了固化反应动力学参数,应用热重分析(TGA)研究了固化产物的热稳定性。结果表明:双氰胺、2-甲基咪唑的最佳用量分别为环氧树脂质量的4%和0.4%,最佳固化条件为160℃/15min。E-12/双氰胺体系和E-12/双氰胺/2-甲基咪唑体系的表观活化能分别为105.12kJ/mol和70.62kJ/mol,固化反应级数n=0.92。起始分解温度约为410℃,促进剂2-甲基咪唑的加入对体系热稳定性没有影响。  相似文献   

16.
以BBE(双酚A二烯丙基醚)作为BDM(4,4′-二氨基二苯甲烷双马来酰亚胺)树脂的改性剂,采用旋转黏度计和非等温DSC(差示扫描量热)法分别研究了BBE/BDM树脂体系在不同温度时的黏度和固化反应动力学过程。研究结果表明:该树脂体系在90~215℃范围内具有较低的黏度(低于1 000 mPa·s),完全满足RTM(树脂传递模塑)的工艺要求;该树脂体系的凝胶温度为210.7℃、固化温度为254.7℃和后处理温度为287.7℃,其固化体系的表观活化能为209.79 kJ/mol、频率因子为3.23×1018s-1和反应级数为0.955(近似1级反应)。  相似文献   

17.
采用非等温DSC(差示扫描量热)法对EP(环氧树脂)/改性DDM(4,4′-二氨基二苯基甲烷)体系的固化反应过程进行了跟踪。采用Kissinger、Ozawa、Crane和T-β(温度-升温速率)外推法等得到该固化体系的动力学参数和固化工艺条件,并对其力学性能和热变形温度进行了测定。结果表明:EP/改性DDM体系的表观活化能为49.43 kJ/mol,反应级数为0.869,固化条件为"85℃/2 h→125℃/2 h",热变形温度为130℃;与EP/DDM体系相比,该固化体系的表观活化能降低了7.0%,热变形温度下降了16.1%,拉伸强度和压缩强度提高了20%以上,而弯曲强度和弯曲模量基本上保持不变。  相似文献   

18.
环氧树脂/聚酰胺/DDM体系的固化行为及力学性能   总被引:2,自引:0,他引:2  
通过非等温DSC法及拉伸性能测试研究了4,4'-二氨基二苯基甲烷(DDM)用量对环氧树脂/聚酰胺651体系的固化反应的影响,计算了固化反应的表观活化能和反应级数,确定了其胶粘剂体系的固化工艺参数。结果表明,胶粘剂中DDM的质量分数达到14%(以环氧树脂质量为基准)时,固化反应放热量达到最大值。固化体系的活化能为53.654 kJ/mol,反应级数为0.895。最佳起始固化温度为40℃,峰值温度为85℃,终止温度为120℃,体系的拉伸强度提高了约50%。  相似文献   

19.
为了解叠氮黏合剂/非异氰酸酯固化体系的反应动力学和固化终点,通过非等温与等温微量热法,利用Kissinger方程和Crane方程研究了聚叠氮缩水甘油醚(GAP)与非异氰酸酯固化剂-丁二酸二丙炔醇酯(BPS)黏结体系的固化过程。结果表明,—C≡C—与—N3摩尔比为1时,GAP/BPS黏结体系固化反应放热量最大;固化反应的表观活化能为80.33kJ/mol,指前因子为108.42s-1,反应级数为0.94,固化反应热为-1357.69J/g;拟合计算出了黏结体系的特征温度,凝胶温度为313.87K,固化温度为316.18K,后固化温度为338.55K;GAP/BPS黏结体系固化反应中存在自催化现象;拟合出黏结体系完全固化时间与温度之间的函数关系为y=4.13×1010e-0.06441x+5.029。  相似文献   

20.
采用程序升温法研究了对氨基苯甲酸改性双酚A酚醛环氧树脂乳液/聚酰胺8536体系的固化行为,利用非等温DSC法考察不同升温速率的固化反应峰值温度,通过Kissinger和Crane方程得到该体系的固化反应动力学参数,并通过外推法确定了理论固化工艺温度为:凝胶温度372.7 K,固化温度398.6 K,后处理温度405.1K.在此基础上,将水性酚醛环氧乳液和聚酰胺固化剂8536固化体系的固化条件确定为140℃、0.5h.由此得到的涂膜平整光滑,硬度达到6H,附着力与柔韧性好,具有优良的耐水性和耐化学介质性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号