首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用氨基羟基脲(HSC)的硝酸水溶液研究了从30%(体积分数,下同)TBP/煤油中还原反萃高浓度四价钚(Pu(Ⅳ))的性能,并与羟胺-肼(HAN-HN)、N,N-二甲基羟胺-单甲基肼(DMHAN-MMH)在钚净化浓缩循环中反萃行为进行了对比。结果表明:在一定HSC浓度下,适当延长相接触时间、减小相比(o/a)、降低酸度和提高温度,均有利于Pu(Ⅳ)的还原反萃。HSC作为还原反萃剂,可以有效实现30%TBP/煤油中高浓钚的反萃,反萃效果较其它几种还原剂更好,有望在先进二循环流程的钚净化浓缩工艺中得到应用。  相似文献   

2.
研究了氨基羟基脲(HSC)浓度、H~+浓度、NO_3~-浓度、Fe3+浓度、UO2+2浓度、反应温度对氨基羟基脲与Np(Ⅵ)还原反应速率的影响,获得了其动力学方程。实验结果表明:增加氨基羟基脲浓度和提高反应温度,降低H~+浓度和NO_3~-浓度,可以提高氨基羟基脲与Np(Ⅵ)还原速率;在UO2+2存在或Fe3+浓度小于1×10-3 mol/L时,对氨基羟基脲与Np(Ⅵ)的还原没有明显影响。氨基羟基脲还原Np(Ⅵ)的动力学方程式为:-dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c2.52(HSC)c-0.53(H+)c-0.61(NO_3~-),在4.00℃时k=(1 037±60)(mol/L)-1.40·s-1,活化能Ea=(64.03±6.4)kJ/mol。  相似文献   

3.
研究了氨基羟基脲(HSC)的硝酸水溶液对30%TBP/煤油中Pu(Ⅳ)的还原反萃取行为,考察了HSC浓度、两相接触时间、两相相比、反萃液硝酸浓度、NO3-浓度、有机相U浓度和温度对Pu(Ⅳ)还原反萃的影响。结果表明:延长两相接触时间能显著提高Pu(Ⅳ)的反萃率,增加氨基羟基脲的浓度、降低反萃液酸度、降低NO3-浓度、增加有机相U浓度和升高温度也对Pu(Ⅳ)的反萃率有一定的提高。采用16级逆流反萃取实验(还原反萃段10级,补充萃取段6级),模拟Purex流程1B槽U/Pu分离工艺,在相比(1BF∶1BX∶1BS)为4∶1∶1的条件下,U的收率大于99.99%,Pu的收率大于99.99%;铀中去钚的分离因数SFPu/U=2.8×104;钚中去铀的分离因数SFU/Pu=5.9×104。HSC作为还原反萃取剂,可有效实现铀钚分离。  相似文献   

4.
研究了氨基羟基脲(HSC)与Pu(Ⅳ)的还原反应动力学,其动力学方程式为:-dc(Pu(Ⅳ))/dt=kc(Pu(Ⅳ))c1.06(HSC)c-0.43(H+)c-0.58(NO3-),在22.1℃时反应速率常数k=(11.8±1.1)(mol/L)-0.046•s-1,活化能为(71.0±1.0)kJ/mol。研究了氨基羟基脲浓度、H+浓度、硝酸根浓度、Fe3+浓度、UO22+浓度对氨基羟基脲与Pu(Ⅳ)还原反应速率的影响,增加氨基羟基脲浓度,降低H+浓度、硝酸根浓度,Pu(Ⅳ)还原速度增加;UO22+浓度和Fe3+浓度对Pu(Ⅳ)还原速度基本无影响。  相似文献   

5.
为有效地改善铀-镎分离效果,采用了单级反萃方法,以乙异羟肟酸为无盐配位体,对其从30%TBP中反萃Np(Ⅳ)的行为进行了较详细的研究。探讨了反萃时间、酸度、配位体浓度、相比、反萃次数、温度、HDBP浓度、放置时间、Np价态等因素的影响。实验结果表明,低碳异羟肟酸型配位体对Np(Ⅳ)有很好的配位效果。  相似文献   

6.
进行了氨基羟基脲(HSC)的硝酸水溶液对30%(体积分数,下同)磷酸三丁酯(TBP)/煤油中高浓度四价钚(Pu(Ⅳ))的还原反萃行为研究,并采用试管串级实验对HSC在钚净化浓缩循环中反萃段工艺进行了验证。结果表明:HSC能有效地实现有机相中高浓Pu(Ⅳ)的反萃;采用13级逆流反萃试管串级实验(还原反萃段10级,补充萃取段3级),对PUREX流程钚净化浓缩反萃段工艺进行了验证,在相比(2BF∶2BX∶2BS)为1∶0.25∶0.15的条件下,Pu的收率为99.99%;钚中去铀的分离因子SF(U/Pu)=3.7×105。HSC作为还原反萃剂,可以实现30%TBP/煤油中高浓度Pu(Ⅳ)的有效反萃,在钚净化浓缩循环工艺中有良好的应用前景。  相似文献   

7.
U(Ⅳ)对Pu(Ⅳ)的单级还原反萃数学模型   总被引:1,自引:0,他引:1  
U(Ⅳ)是PUREX流程铀钚分离过程的还原剂。建立了30%TBP/煤油体系中U(Ⅳ)还原反萃Pu(Ⅳ)的单级迭代计算数学模型,并提出了相应的数学算法,编写了模拟连续逆流萃取器其中一级的计算机模拟程序,使用文献数据对模型和程序进行了验证,计算值与实验值符合良好,并与文献报道的模型的计算结果进行了比对,准确度要高于文献数学模型。  相似文献   

8.
Np(Ⅳ)的溶解行为研究   总被引:3,自引:2,他引:1  
在低氧条件下以Na2S2O4或铁粉作还原剂,测定了Np(Ⅳ)在模拟地下水和重蒸水中的溶解度,讨论了溶液pH值和放置时间对Np(Ⅳ)的形态及在两种水样中溶解度的影响。实验结果表明:放置时间对溶解度的影响不大;随着溶液pH值(6-12)的变化,Np(Ⅳ)在模拟地下水和重蒸水中的溶解度不变,Np(Ⅳ)主要以Np(OH)4,Np(OH)5^-两种形态存在。  相似文献   

9.
乙异羟肟酸与Np(Ⅳ)、Pu(Ⅳ)配合物稳定常数的测定   总被引:3,自引:1,他引:2  
研究了乙异羟肟酸(AHA)与Np()、Pu()的配位行为。研究结果表明:乙异羟肟酸在20℃、1molLHClO4中,与Np()、Pu()形成了摩尔比为1∶1的配合物。相应配合物的稳定常数对数值lgβ1分别为1134、1300。  相似文献   

10.
短链羟肟酸对Pu(Ⅳ)的配位、还原及反萃   总被引:4,自引:0,他引:4  
在λ-19分光光度计上观测了加入甲羟肟酸(FHA)前后Pu(Ⅳ)-硝酸溶液的吸收光谱随时间的变化,并进行了甲、乙羟肟酸(FHA,AHA)对含铀的30%TBP/0K中Pu(Ⅳ)的反萃实验。结果表明:在硝酸溶液中短链羟肟酸能与Pu(Ⅳ)形成比较稳定的配合物,随着溶液放置时间的延长,溶液中的Pu(Ⅳ)逐渐被还原到Pu(Ⅲ),但该还原过程比较缓慢;在一定条件下,短链羟肟酸能有效地将有机相中的Pu(Ⅳ)反萃到水相,配位剂浓度的增加和反萃酸度的降低有利于短链羟肟酸对Pu(Ⅳ)的反萃。在同样条件下,AHA对Pu(Ⅳ)的反苯效果比FHA好。但这种差别随着配位剂浓度的增加和反萃酸度的降低而变小。  相似文献   

11.
研究了磷酸三丁酯(TBP)辐解产物磷酸二丁酯(HDBP)和磷酸一丁酯(H2MBP)对U(Ⅳ)-肼以及乙异羟肟酸(AHA)反萃Pu(Ⅳ)的影响,考察了相接触时间、相比(o∶a)、还原剂浓度、HNO3浓度、肼浓度、TBP辐解产物HDBP和H2MBP浓度等条件对含有HDBP或H2MBP的30%(体积分数)TBP/煤油中Pu(Ⅳ)反萃率的影响。结果表明:U(Ⅳ)对Pu(Ⅳ)有很强的还原反萃能力,降低相比、HNO3浓度、肼浓度有利于U(Ⅳ)对Pu(Ⅳ)的反萃,并且U(Ⅳ)可以快速有效地破坏HDBP、H2MBP与Pu(Ⅳ)的络合,将Pu(Ⅳ)反萃到水相。乙异羟肟酸对Pu(Ⅳ)有很强的络合反萃能力,通过降低酸度、延长相接触时间和增大AHA浓度能够有效降低HDBP和H2MBP对AHA络合反萃Pu(Ⅳ)的影响。  相似文献   

12.
在乙醇 水体系中 ,用乙酸乙酯和盐酸羟胺为主要原料合成了乙异羟肟酸 (AHA) ,并通过元素分析、红外光谱 (IR)、质谱 (MS)等方法对其结构进行了表征。用TTA萃取法测定了 1mol/LHNO3体系中AHA与Pu(Ⅳ ) ,Np(Ⅳ )配合物的一级累积稳定常数 ,分别为 5 3× 10 12 和 6 1× 10  相似文献   

13.
应用溶剂萃取法研究了N,N-二甲基-3-氧杂-戊酰胺酸(DOGA)与Np(Ⅳ),Pu(Ⅳ)的配位行为。研究结果表明,DOGA与Np(Ⅳ),Pu(Ⅳ)在25℃可以形成比较稳定的配合物,配合物的逐级累积稳定常数分别为:Pu(DOGA)3^ :1gβ1=6.52,1gβ2=9.14,1gβ3=15.77;Np(DOGA)3^ :1gβ1=6.95,1gβ2=10.435,1gβ3=14.93。  相似文献   

14.
以甲酸乙酯和N-甲基盐酸羟胺为主要原料,在乙醇-水体系中合成N-甲基甲异羟肟酸(NMFHA),并通过元素分析、红外光谱、质谱分析和核磁共振波谱等方法对其结构进行表征。TTA萃取法测定结果表明,在1.0mol/LHNO3体系中,Np(Ⅳ)、Pu(Ⅳ)与NMFHA形成稳定的1∶2的配合物,其累积稳定常数分别为:β1(Np(Ⅳ))=8.83×1092(Np(Ⅳ))=1.01×10191(Pu(Ⅳ))=7.78×10102(Pu(Ⅳ))=5.80×1019。  相似文献   

15.
PUREX流程中Tc(Ⅶ)对U(Ⅳ)反萃Pu(Ⅳ)的影响   总被引:2,自引:2,他引:0  
研究了Tc()对U()还原反萃Pu()的影响。研究结果表明,在单级反萃中,有机相中锝的初始质量浓度高达441mgL时,Pu()的反萃率无明显改变;两相混合放置时间足够长时,Pu()的反萃率会降低,而且开始降低的时间随锝浓度增加而缩短;体系中有机相和水相的酸浓度、Pu浓度、U()及U()浓度的变化在所研究的范围内对Pu()反萃率的影响都不大。逆流萃取的串级实验结果表明,当1BF中Tc()的质量浓度大于135mgL时,会严重影响Pu()的反萃;小于70mgL时,对Pu()的反萃无明显影响。研究还表明,引起Pu()反萃率降低的原因是肼在低价锝的催化作用下的破坏。降低Tc()含量和缩短放置时间都有助于减小PUREX流程中锝对U()反萃Pu()的影响。  相似文献   

16.
采用恒界面池法研究了异羟肟酸(AHA)从30%TBP-煤油中反萃Np(Ⅳ)的界面反应动力学。恒界面池装置示意图示于图1。  相似文献   

17.
本文在带有阴阳极的恒界面池中研究了HNO_3-N_2H_5NO_3(H_2O)/UO_2(NO_3)_2-HNO_3(30%TBP-煤油)体系在U(Ⅵ)电解还原过程中的U(Ⅵ)反萃和U(Ⅳ)萃取动力学。这是U(Ⅵ)电还原反萃动力学研究的第二步。根据实验结果和数据处理,得到U(Ⅵ)反萃和U(Ⅳ)萃取过程的表观活化能分别为36.02kJ/mol和21.13kJ/mol;U(Ⅵ)反萃和U(Ⅳ)萃取速率随两相搅拌速率的增大而增大;U(Ⅵ)反萃和U(Ⅳ)萃取过程均由扩散控制。随着阴极电位的降低,U(Ⅵ)反萃和U(Ⅳ)萃取速率均增大。  相似文献   

18.
应用分光光度法和溶剂萃取法研究了硝酸溶液中双羟基脲(DHU)与Np(Ⅳ)的配位行为。图1为加入不同浓度DHU后Np(Ⅳ)的HN03溶液在650~1000nm范围内吸收光谱的变化,根据Np(IV)在960n/n处吸光度随DHU加入量的线性变化关系,求得配合物一级累积稳定常数为r1.20±0.30)×10^8。  相似文献   

19.
采用分光光度法研究了HNO3溶液中U(Ⅳ)还原Np(Ⅴ)的反应,获得了动力学方程-dc (Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.7 (U(Ⅳ))c1.9 (H+)c (NO-3),25℃时反应速率常数k=(6.37±0.49)×10-3 L3.6/(mol 3.6•min),反应活化能Ea=60.13 kJ/mol。结果表明,浓度为0~4.2×10-2mol/L的U(Ⅵ) 对U(Ⅳ)还原Np(Ⅴ)的反应几乎没有影响,并探讨了可能的反应机理。  相似文献   

20.
研究了脉冲辐解过程中氨基羟基脲与水辐解活性粒子(e-aq、·OH和·H)及单电子氧化剂·CO3-的反应动力学过程。反应近似为准一级反应,反应速率常数分别为k(e-aq)=1.41×108 L/(mol·s)、k(·OH)=1.05×1010 L/(mol·s)、k(·H)=2.68×105 L/(mol·s)、k(·CO-3)=4.25×108 L/(mol·s)。其中氨基羟基脲与·OH的反应速率常数最大,故在辐解过程中其为主要反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号