首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以正硅酸乙酯(TEOS)为硅源,分别以十六烷基三甲基溴化铵(CTAB)和P123为模板剂通过溶胶凝胶法、水热合成法合成出MCM-41、Al-MCM-41、SBA-15介孔分子筛,然后将其作为催化剂载体负载Fe2O3,应用到乙苯催化脱氢制苯乙烯的反应中,考察了不同负载量对乙苯脱氢反应性能的影响,探讨了催化剂的活性保持时间。结果表明,将介孔分子筛作为催化剂载体负载Fe2O3应用到乙苯脱氢反应,当负载量为60%时乙苯的转化率和苯乙烯的选择性均最高。当n Si/n Al为60时,Fe2O3/Al-MCM-41催化性能最好。Fe2O3/SBA-15所持续的活性时间最长。  相似文献   

2.
分别以正硅酸乙酯和伯胺表面活性剂为原料和模板剂成功制备HMS介孔分子筛,经负载活性组分后得到Pt-Sn/HMS催化剂并将其应用于丙烷脱氢制丙烯反应。探究合成过程中伯胺表面活性剂碳链长度及水和乙醇的比例对HMS介孔分子筛孔结构的影响。XRD和N2吸附-脱附等分析结果表明,模板剂链长增长时,介孔分子筛孔径、孔壁厚、比表面积及孔容均增大。适当的水/乙醇比例有利于获得更大比表面积和孔体积的介孔分子筛,并表现出更有序的介孔结构。丙烷脱氢制丙烯反应评价和热分析等表征结果表明,HMS介孔分子筛孔道特征直接影响Pt-Sn/HMS催化剂的催化性能。使用孔体积且比表面积较大的HMS样品作为载体制备的脱氢催化剂在丙烷脱氢反应中表现出优异的催化活性。性能最优的Pt-Sn/HMS-0.60-16催化剂上,平均丙烷转化率达到46.5%,平均丙烯选择性为94.1%,反应24 h后积炭量仅为质量分数3.4%。  相似文献   

3.
采用B,D,F,H 4种不同理化性质的二氧化硅微球作为Cu/Si O2催化剂的载体,等体积浸渍法制备Cu/Si O2催化剂,并对制备的催化剂进行了表征和活性评价。通过BET法、程序升温还原法(TPR)对所得催化剂进行表征,采用仲丁醇脱氢作为探针反应,介绍了不同载体、不同理化性质对催化剂催化性能的影响。结果表明:不同载体具有不同的理化性质,这些理化性质会影响催化剂在仲丁醇脱氢反应中的活性,F型载体为较好的负载纳米铜颗粒的载体。  相似文献   

4.
李芹 《化工进展》2019,38(11):4965-4970
以十二烷基二甲基苄基溴化铵为介孔模板剂合成了具有梯级孔结构的丝光沸石分子筛,并以之为载体通过浸渍负载制备了钒基催化剂。通过X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、程序升温脱附法(NH3-TPD)等技术对制备的催化剂进行了表征。由表征结果可知,制备的钒基催化剂上出现了孔径为2~3nm的介孔,比表面积及总孔容等都有不同程度增加,弱酸中心数量升高,中强酸及强酸数量下降,催化剂的相对结晶度随模板剂用量的增多也逐渐下降。催化剂上异丁烷脱氢反应评价结果表明,梯级孔结构的引入能够明显改善催化剂的异丁烷脱氢性能,催化剂上异丁烷转化率略微降低、异丁烯选择性明显升高、裂解等副反应受到抑制、积炭的聚合度有所下降。合成时模板剂的添加量存在最优值,V-MOR-2样品表现出最优的催化活性。  相似文献   

5.
钙钛矿型氧化物催化剂(ABO3)具有廉价易得、高热稳定性、催化活性高的优点,在催化一氧化碳(CO)低温脱除领域具有重要的理论研究意义和实际应用价值。本研究中,以聚苯乙烯(PS)微球、碳微球为模板,硝酸镧、硝酸钴、硝酸铁为金属源,柠檬酸为络合剂,通过溶胶-凝胶法制备了多孔LaCoO_3和多孔LaFeO_3催化剂。采用X射线衍射、热重-差热、扫描电镜、透射电镜和氮气吸附-脱附等手段对所得样品进行了系统表征分析。结果表明:所制备的催化剂具有高纯度和高热稳定性。加入11.12g PS微球所制备的多孔LaCoO_3催化剂平均颗粒粒径为13nm,加入0.5g碳微球制备的多孔LaFeO_3催化剂平均粒径为19nm,且具有介孔和微孔分级孔结构。催化性能测试结果表明:在同等条件下对CO转化率达到50%时,多孔LaCoO_3和多孔LaFeO_3使得催化温度分别降低了43℃和32℃;CO完全转化温度则分别降低了90℃和60℃。  相似文献   

6.
严洁  汪俊  金亮 《化工中间体》2023,(13):159-161
铂基催化剂是质子交换膜燃料电池的核心材料,使用合适的载体负载Pt可以有效降低Pt的用量,降低成本。碳气凝胶具有良好的导电性和可控的纳米三维网络结构,是催化剂载体的最佳材料之一。采用间苯三酚、间苯二酚和甲醛为碳源,PEG-2000为模板剂,采用反相微乳液法制备出了具有高比表面积(750m2/g)、高介孔孔径(15~50nm)的碳气凝胶微球,采用间歇微波加热辅助还原乙二醇法将纳米Pt颗粒均匀的负载在碳气凝胶表面,利用电化学工作站测得其循环伏安曲线,计算出其电化学活性面积高达191m2/gPt,远高于相同Pt含量的商业铂碳催化剂(79m2/gpt),在经过5000次循环后仍具有较高的催化活性。  相似文献   

7.
采用两步种子溶胀聚合制备了含有氰基官能团的多孔聚合物微球载体,经化学法修饰后再负载四氯化钛,制备了聚合物微球载体负载的Ziegler-Natta催化剂,研究了多孔聚合物微球载体催化剂催化乙烯聚合。结果表明:多孔聚合物微球载体颗粒规整、均一,催化剂形态良好,复制了载体的形貌;多孔聚合物微球载体催化剂催化乙烯聚合最高活性为45.0kg,聚合产物颗粒形态较规整,堆积密度可达0.33g/cm3,得到的聚乙烯为超高分子量聚乙烯,相对分子质量最高为4.8×106。  相似文献   

8.
以正硅酸乙脂(TEOS)为硅源,十六烷基三甲基溴化铵(CTAB)为模板剂,合成了MCM-41介孔分子筛,采用等体积浸渍法制备了一系列Fe2O3/MCM-41催化剂。考察了Fe2O3负载量对催化剂乙苯脱氢性能的影响。结果表明,Fe2O3在催化剂中的质量分数为60%时,乙苯脱氢的转化率和选择性最佳,分别为17.15%和80.87%。  相似文献   

9.
付佳  傅吉全 《工业催化》2014,22(1):44-47
分别以Hβ分子筛和γ-Al2O3为载体,采用浸渍法制备不同Sn含量的负载型Pt-Sn双组分丙烷催化脱氢催化剂。在固定床微反装置上对制备的催化剂进行活性评价,并采用NH3-TPD方法测定催化剂表面酸量和酸强度分布。结果表明,负载型Pt-Sn/Hβ和Pt-Sn/γ-Al2O3催化剂对丙烷催化脱氢反应性能与Sn含量密切相关,弱酸中心的存在对丙烷催化脱氢反应有利,对于特定的Pt-Sn体系,γ-Al2O3为载体的催化剂性能优于Hβ分子筛为载体的催化剂,当负载Sn质量分数为0.9时,Pt-Sn/γ-Al2O3催化剂性能最好。  相似文献   

10.
以碳材料为载体的催化剂在电催化领域得到广泛关注,采用双模板法技术,将200 nm孔径的阳极氧化铝模板与嵌段共聚物模板F127相结合,利用气相还原和高温碳化技术,合成了以介孔碳纳米线为载体的含铂量为10 wt%的铂/介孔碳纳米线复合材料。并对其在甲醇的电氧化性能方面进行了考察。结果表明,由于介孔碳纳米线的存在,增加了材料的有效比表面积,使铂的有效催化能力显著提高。  相似文献   

11.
利用介孔碳作为载体,制备介孔碳担载Pt-WO3复合催化剂应用于质子交换膜燃料电池(PEMFC)电极.以苯为碳源,采用气相沉积法复制介孔SiO2Al-SBA-15模板结构合成石墨化介孔碳Cg,采用浸渍法制备无定形介孔碳CMK-3.通过分步沉积,将Pt和WO3担载到介孔碳载体上,采用比表面分析(BET)、X线衍射(XRD)、透射电子显微镜(TEM)、循环伏安法以及单电池极化性能测试对介孔碳担载的复合催化剂进行表征.结果表明:介孔碳作为催化剂载体,其孔道结构有助于催化剂的均匀分散,从而提高催化剂的电催化剂活性.由于石墨化介孔碳的导电性能高于无定形介孔碳,因此Pt-WO3/Cg比Pt-WO3/CMK-3具有更好的电极催化活性.  相似文献   

12.
李悦  罗沙  陈东  曹凤英  许普  何松波 《工业催化》2016,24(12):46-49
通过N_2吸附-脱附法对4种Al_2O_3载体进行孔结构表征,采用等体积真空浸渍法制备Pt质量分数0.5%的Pt-Sn-K/Al_2O_3催化剂,以直链烷烃C_(16)~C_(19)脱氢反应为探针,考察Al_2O_3载体孔结构对催化剂脱氢性能的影响。结果表明,催化剂载体的孔容、平均孔径和比表面积之间存在相互制约的关系。载体孔容和平均孔径大,则其比表面积相对较小。对于直链烷烃C_(16)~C_(19)脱氢催化剂,较大孔容、孔径和一定比表面积的Al_2O_3载体为最佳,孔容和孔径较小的催化剂脱氢活性和稳定性较差。  相似文献   

13.
以葡萄糖为原料,经一步水热法生成葡萄糖基碳球(GCs),粒径约500nm,利用微乳液聚合法合成粒径约270nm的聚苯乙烯微球(PSs)。通过真空抽滤,制备了GCs和PSs层层组装的多级模板,TiCl4完全浸润模板并经干燥和高温煅烧,获得了空间层序多级孔结构的TiO2。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、N2吸附-脱附等手段表征了所制备催化剂的形貌、组分和孔结构。在饱和CO2气氛下加入H2O,利用催化剂在模拟太阳光条件进行光催化还原试验。结果表明:经过7h的光催化测试,相较于商用P25和无空间结构的TiO2,层序空间多孔TiO2生成还原产物CO的产率均得到明显提高。其中,空间复合多级孔TiO2在结构失配的情况下仍表现出较高的CO产率。结合实验结果和表征证实:纳米微球层所形成的层序空间多孔TiO2具有较高的比表面积和丰富的孔结构,有利于形成大量表面活性位点。三维网状多孔结构暴露出...  相似文献   

14.
采用绿色可持续的催化剂替代传统贵金属或过渡金属催化剂是目前工业催化领域研究的重要方向。作为绿色催化剂中的重要成员之一,多孔碳基材料由于其独特的孔道结构、较大的比表面积、丰富的表面含氧官能团以及良好的导电性和抗腐蚀性,被广泛应用于生物、医药、电池和化工领域。近年来,非金属碳基催化剂被发现是一种良好的丙烷脱氢催化剂,具有替代传统Pt基和Cr基催化剂的应用前景,得到广泛关注。一般而言,碳基催化剂的催化活性与其表面性质和孔道结构有很大关系:(1)碳材料表面的含氧官能团、杂原子和缺陷位点等可以作为活性中心,活化丙烷分子中的碳氢键,实现脱氢的目的;(2)碳材料的孔道结构和电子特性等会影响反应物丙烷和反应产物丙烯分子的扩散和传质,进而影响碳基催化剂在丙烷脱氢反应中的活性、选择性和稳定性。综述近年来丙烷直接脱氢制丙烯碳基催化剂的研究进展,详细比较不同碳材料之间的优缺点和性能差异,系统讨论碳材料的活性位点和物化性质对其催化性能的影响,并对未来碳基丙烷脱氢催化剂的发展方向和应用前景进行展望。  相似文献   

15.
采用Cr2O3为活性组分,K2O为助催化剂,以不同孔径硅胶为载体,制备异丁烷脱氢催化剂,在连续微反-色谱装置上对催化剂的反应性能进行考察,结果表明,A型硅胶与B和C型硅胶相比具有更好的脱氢性能,在负载Cr2O3质量分数为20%和K2O质量分数为2%时,600 ℃条件下,异丁烷转化率为24.00%,异丁烯选择性为80.94%,SEM分析表明,高温下催化剂A和B不够稳定,催化剂C的稳定性较好。  相似文献   

16.
针对丙烷脱氢催化剂用氧化铝作为载体时存在的孔结构与表面酸性调节的问题,开发了以海藻酸盐为黏合剂,采用挤出滚圆方法,制备了大孔球形氧化铝颗粒,并以此作为载体负载Pt、Sn活性组分制备了丙烷脱氢催化剂,研究了氧化铝载体煅烧温度对催化剂晶型、孔道结构、表面酸性、H2还原性能与丙烷脱氢性能的影响.实验结果表明:随氧化铝载体煅烧...  相似文献   

17.
碳材料作为丁烷氧化脱氢催化剂具有活性高、氧化深度可控的优点,具有高比表面积、丰富缺陷结构的多孔石墨烯是碳材料催化剂的理想选择。本文首次将化学气相沉积(CVD)法制备的多孔石墨烯作为催化剂应用于正丁烷氧化脱氢反应过程中。结果表明,多孔石墨烯对正丁烷氧化脱氢反应表现出显著催化活性,相对于碳纳米管,采用多孔石墨烯作为催化剂得到了更高的正丁烷转化率与C4烯烃选择性。当反应温度小于550℃时,C_4烯烃的选择性较高(40%);在550℃时,C4烯烃的收率达到最大值21.1%。在7.5 h的稳定性考察中,多孔石墨烯保持了良好的催化稳定性。反应后多孔石墨烯的表面缺陷度及C=O含量下降,这说明多孔石墨烯表面的C=O键是催化正丁烷氧化脱氢反应的活性中心。  相似文献   

18.
以介孔材料MSU-1为载体,不同金属氧化物为活性组分,分别制备负载型催化剂并研究其在CO<,2>气氛中异丁烷脱氢的催化活性.结果证明VOx/MSU-1催化剂有最好的异丁烷氧化脱氢催化活性.基于此,对影响CO<,2>氧化异丁烷脱氢的温度、空速和氧烷比等工艺条件进行了考察,结果显示,当温度为853 K,空速为7200 mL...  相似文献   

19.
以聚苯乙烯微球为模板制备蜂窝状多孔石墨烯为载体,分别以过硫酸铵和β-MnO_2为氧化剂,采用化学原位聚合的方法制备合成多孔石墨烯/聚苯胺超级电容器材料。并利用X射线衍射(XRD)、比表面积分析仪(BET),扫描电子显微镜(SEM)、傅里叶红外光谱仪(FT-IR)和电化学工作站等对其微观形态、结构组成和电化学性质进行检测分析。结果表明:制备的载体材料具有蜂窝状结构,且以β-MnO_2为氧化剂的电容器材料具有良好的电化学性能。  相似文献   

20.
迟长云  李英杰 《化工进展》2018,37(12):4908-4916
采用挤出滚圆法对钙基碳载体Ca(OH)2进行造粒。在双固定床反应器上研究了黏结剂、支撑体和造孔剂对造粒后钙基碳载体循环捕集CO2性能的影响,并提出采用多孔Al2O3球粉作为新型支撑体。结果表明,选择聚乙烯吡咯烷酮为颗粒黏结剂时最佳添加量为2%。高铝水泥和多孔Al2O3球粉均可作为支撑体造粒。多孔Al2O3球粉作为支撑体造粒后碳载体的循环捕集CO2性能更高,其10次循环后CO2吸收量为0.23g/g,是添加高铝水泥造粒碳载体的1.35倍。微晶纤维素作为造孔剂显著提高了造粒碳载体的循环捕集CO2性能。多孔Al2O3球粉作为支撑体造粒后碳载体的抗压强度略高于高铝水泥作为支撑体。多孔Al2O3球粉造粒钙基碳载体拥有大量30~100nm孔隙,其比孔容高于高铝水泥造粒碳载体,这有利于CO2捕集。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号