首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 640 毫秒
1.
采用传统的固相反应法制备(Sr_(0.9)Ba_(0.1))La_4Ti_4O_(15)+x%Nd_2O_3(质量分数0≤x≤8,BSN)系微波介质陶瓷,并对其物相组成、晶体结构及微波介电性能进行分析。研究结果表明,Nd_2O_3含量的增加降低了BSN陶瓷的烧结温度,陶瓷的主晶相为SrLa_4Ti_4O_(15)相,并伴随有少量第二相La_2TiO_5的生成。在微波频率下,随着Nd_2O_3含量的增加,BSN陶瓷的介电常数及谐振频率温度系数变化小,品质因数与频率之积(Q×f)值提高,优化出掺杂4%Nd_2O_3的(Sr_(0.9)Ba_(0.1))La_4Ti_4O_(15)陶瓷具有最佳微波介电性能:εr=43.2,Q×f=42 015 GHz(6.024 GHz),τf=-9.6μ℃-1。  相似文献   

2.
采用固相反应法制备了具有钙钛矿结构的(1–x)Ca_(0.7)Nd_(0.2)TiO_(3-x)Ba_(0.4)Sr_(0.6)TiO_3(0.05≤x≤0.5)陶瓷,并对其烧结行为、相组成、显微结构及微波介电性能进行了研究。结果表明:随着(Ba0.4Sr0.6)2+含量的增加,(1–x)Ca_(0.7)Nd_(0.2)TiO_(3-x)Ba_(0.4)Sr_(0.6)TiO_3(0.05≤x≤0.5)陶瓷的品质因数(Q·f)及谐振频率温度系数(τf)单调递减,而相对介电常数(εr)先升后小幅降低。当x=0.2,且烧结温度为1 450℃时,该介质陶瓷的微波介电性能为:εr=151.3,Q·f=5 900 GHz,τf=399.4×10–6/℃。与CaTiO_3(εr=160,Q·f=6 800 GHz,τf=850×10–6/℃)相比,Q·f和εr略微降低,τf有较大程度的减少,故此陶瓷体系有望替代CaTiO_3成为新一类高介电性微波陶瓷。  相似文献   

3.
微波烧结法制备(1-x)(Mg_(0.7)Zn_(0.3))TiO_(3-x)(Ca_(0.61)La_(0.26))TiO_3(MZT-CLT,x=0.13)系介质陶瓷,研究微波烧结工艺对MZT-CLT陶瓷烧结性能、微观结构、相组成和微波介电性能的影响。结果表明,MZT-CLT陶瓷的主晶相为(Mg_(0.7)Zn_(0.3))TiO_3(MZT)、Ca_(0.61)La_(0.26)TiO_3(CLT),第二相为(Mg_(0.7)Zn_(0.3))Ti_2O_5;升温速率15℃/min,烧结温度1 275℃,保温时间20min时,陶瓷微波介电性能优良:介电常数εr=26.21,品质因数与频率之积Q·f=120 000GHz,频率温度系数τf=-3×10~(-6)/℃。  相似文献   

4.
采用固相反应法制备了Li_2(Zn_(1–x)Co_x)_2Mo_3O_(12)陶瓷,研究了Co~(2+)取代对其相结构和微波介电性能的影响,并通过添加Ti O_2调节了该陶瓷的τ_f值。结果表明:不同Co~(2+)取代的Li_2(Zn_(1–x)Co_x)_2Mo_3O_(12)陶瓷均显示出单相钒铁铜矿结构。随着Co~(2+)取代量的增加,陶瓷的致密化温度显著降低,相对密度和Q·f值均呈现先增大后减小的趋势。当x=0.1时,陶瓷具有相对较好的微波介电性能:ε_r=10.85,Q·f=65 031 GHz,τ_f=–73×10~(–6)/℃。添加Ti O_2能够有效调节Li_2Zn_2Mo_3O_(12)陶瓷的τ_f值向正值方向移动,0.4Li_2(Zn_(0.9)Co_(0.1))_2Mo_3O_(12)-0.6Ti O_2陶瓷的介电性能较佳:ε_r=15.80,Q·f=22 991 GHz,τ_f=–4.5×10~(–6)/℃。  相似文献   

5.
微波烧结Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54)陶瓷材料的初步研究   总被引:1,自引:0,他引:1  
研究了Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54)(x=0.67,BST)陶瓷材料的微波烧结情况,从烧结特性、微结构与相组成及微波介电性能等方面对微波烧结的样品与传统工艺制得的样品进行了对比.结果表明, 与传统制备工艺相比,微波烧结BST陶瓷缩短了烧结周期,并促进了样品的致密化,其物相组成和传统烧结的样品没有区别,且晶粒细小分布均匀.微波烧结BST陶瓷可获得较优的微波介电性能:介电常数ε_r=82.89,品质因数与频率之积Qf=8 450 GHz(频率f=4.75 GHz),谐振频率温度系数τ_f=22.58×10~(-6)/℃.  相似文献   

6.
研究了传统固相反应法制备所得xCa_(0.5)Nd_(0.5)(Mn_(0.7)Fe_(0.3))O_3-(1–x)Ca_(0.61)Nd_(0.26)TiO_3(0.1≤x≤0.25,CNMFT_x)多晶陶瓷相组成、显微结构、烧结性能与微波介电性能之间的影响关系。X射线衍射研究表明,在研究组分范围内CNMFT_x样品均为单一正交钙钛矿结构;当烧结条件为1 400℃/4 h,x=0.1~0.2时,Fe~(3+)/Mn~(3+,4+)替代Ca_(0.61)Nd_(0.26)TiO_3中Ti~(4+)后,相对介电常数(εr为88.5~77.5)、品质因子(Q·f为7 010~9 370 GHz)和谐振频率温度系数(τf为207.4×10~(–6)/℃~149.1×10~(–6)/℃)逐渐降低,而当x=0.25时,εr(73.4)与τf值(119.6×10~(–6)/℃)仍按规律降低,虽然此时样品晶粒尺寸更为均匀,但Q·f值(5 100 GHz)降幅增加。因此,对于ABO3型钙钛矿结构的微波介质陶瓷,当具有铁磁效应离子的添加量较小时,微波介电性能的变化符合预期规律;但当置换量达到一定比例时,铁磁性增加,导电性增强,巨磁电阻效应减小,致使微波陶瓷介电损耗增加。  相似文献   

7.
主要采用固相反应法,将原料粉体经过混料、球磨、预烧、成型和烧结后制备Ba_3La_2Ti_2Nb_2O_(15)(BLTN)微波介质陶瓷。研究了不同量的Bi_2O_3掺杂对BLTN微波介质陶瓷烧结行为、显微结构和介电性能的影响。结果表明:Bi_2O_3的添加不仅能有效降低BLTN陶瓷的烧结温度,而且显著提高了其相对介电常数(ε_r)和品质因数。当Bi_2O_3添加量为0.2%(质量分数)时,陶瓷的烧结温度由1440℃降低到1360℃,并呈现较好的微波介电性能:ε_r=55,Q·f=13 500 GHz(4.71 GHz),τ_f=–2.35×10~(-6)℃~(-1)。  相似文献   

8.
采用传统固相反应法制备了(1–x)(0.94ZnTiNb_2O_8-0.06Ba Cu(B_2O_5))-xTiO_2(0.038≤x≤0.091)微波介质陶瓷,研究了不同含量TiO_2添加对0.94ZnTiNb_2O_8-0.06BaCu(B_2O_5)(0.94ZTN-0.06BCB)陶瓷烧结特性、相结构、微观形貌以及微波介电性能的影响。结果表明:(1–x)(0.94ZTN-0.06BCB)-x TiO_2陶瓷均由ZnTiNb_2O_8和Zn_(0.17)Ti_(0.5)Nb_(0.33)O_2相组成,随着TiO_2含量的增加,陶瓷的烧结温度、εr和τf增加,ρ和Q·f降低。烧结温度为880℃时,0.926(0.94ZTN-0.06BCB)-0.074TiO_2陶瓷表现出了优良的综合性能:εr=40.25,Q·f=32 000 GHz(5.89 GHz),τf=–3.86×10–6℃–1。且在此温度下介质材料与Ag电极兼容性良好,表明该材料是制备LTCC器件的备选材料。  相似文献   

9.
用固相法制备了x(Ca0.61Nd0.26)TiO3(1-x)(Li1/2Sm1/2)TiO3(CNLST)(x=0.3~0.6)微波介质陶瓷,研究了掺杂Nd3+对CaTiO3-Li1/2Sm1/2TiO3(CLST)陶瓷介电性能的影响。结果发现,该体系在掺杂Nd3+后均形成钙钛矿结构,其介电常数εr和谐振频率温度系数τf均随x的增大而增加,品质因数与谐振频率的乘积Qf值随x的增大而降低;当x=0.48时,在1 150 ℃预合成,1 250 ℃烧结保温3 h得到材料的微波介电性能:εr=123,Qf=4 122 GHz(f=1.5 GHz),τf=0.8 μ℃-1。  相似文献   

10.
采用固相合成法制备了B位Ta/Zr共掺杂的0.96[Bi_(1/2)(Na_(0.84)K_(0.16))_(1/2)(Ti_(1–x–y)Ta_xZr_y)O_3]-0.04Sr TiO_3(简称BNKT-ST-Ta_xZr_y)(x=0~0.025,y=0~0.20)无铅陶瓷。研究了B位Ta/Zr共掺对BNKT-ST-Ta_xZr_y无铅三元陶瓷微观结构、电性能和储能密度的影响。结果表明:随着Ta和Zr含量的增加,陶瓷的压电常数d_(33)减小,陶瓷向先兆性压电体转变;饱和极化强度、剩余极化和矫顽场降低,陶瓷的弛豫特性增加;储能密度先增加后降低,并且储能密度在x=0.01,y=0.05时达到最大值(1.005 J/cm~3),储能效率持续增加。  相似文献   

11.
采用复合添加BaCuO_2-CuO(以下简称BCC)、ZnO-B_2O_3-SiO_2(以下简称ZBS)等烧结助剂的方法,研究了Ba_4(Nd_(0.85)Bi_(0.15))_(28/3)Ti_(18)O_(54)陶瓷(以下简称BNT)低温烧结的烧结特性和微波介电性能。结果表明:复合添加(均为质量分数)2.5%BaCuO_2-CuO和5%ZnO-B_2O_3-SiO_2后可以在1050℃烧结成致密瓷,气孔率为5.73%,在5.6 GHz,相对个电常数ε_r为64.25,Q·f值为2026 GHz,频率温度系数τ_f为+26.4×10~(-6)℃~(-1),可望实现与Cu电极浆料低温共烧。  相似文献   

12.
采用微波加热法于1 100℃保温30 min(升温速率为20℃/min)合成Ba6-3xNd8+2xTi18O54(x=0.30~0.75,BNT)陶瓷粉末,再添加质量分数45%的B2O3-SiO2-CaO-MgO( BM)玻璃,在马弗炉中于900℃烧结2h制得BNT陶瓷.研究了所制陶瓷的微观结构及性能.结果表明:微波...  相似文献   

13.
以柠檬酸为络合剂,通过sol-gel法制备了Ba3.99Sm9.34Ti18O54陶瓷前驱体;经1100℃预烧2h压片成型后,再在1300℃保温3h,即得到了烧结致密的陶瓷样品。与传统固相法相比,其烧结温度降低了50℃,且陶瓷晶粒细小,晶粒分布均匀,具有更加优良的微波介电性能:εr=79.56,Q·f=9636GHz(4.71GHz),τf=–1.23×10–6/℃。  相似文献   

14.
采用固相反应法,在不同温度(1100~1250℃)下预烧后烧结制备了Ba4La9.33(Ti0.95Zr0.05)18O54微波介质陶瓷,研究了预烧温度对其相组成、显微结构以及微波介电性能的影响。结果表明:不同预烧温度下制备的陶瓷样品主晶相均为类钨青铜结构的BaLa2Ti4O12晶相。1200℃预烧制备的陶瓷样品晶粒为典型的柱状晶,分布均匀,且晶粒尺寸最大。1200℃预烧后,于1400℃烧结制备的陶瓷样品具有最佳的微波介电性能:εr=86.83,Q·f=5875GHz(4.482GHz),τf=81.99×10–6/℃。  相似文献   

15.
采用溶胶-凝胶(Sol-Gel)法在Pt/Ti/SiO_2/Si衬底上制备Bi_(3.15)Nd_(0.85)Ti_3O_(12)薄膜,发现制备的薄膜具有单一的钙钛矿晶格结构,且表面平整致密.对Bi_(3.15)Nd_(0.85)Ti_3O_(12)薄膜的电学性能进行了研究.结果表明,室温下,在测试频率1 MHz时,其介电常数为213,介电损耗为0.085;在测试电压为350 kV/cm,其剩余极化值、矫顽场强分别为39.1 μC/cm~2、160.5 kV/cm;表现出良好的抗疲劳特性和绝缘性能.  相似文献   

16.
微波陶瓷凝胶注模成型工艺研究   总被引:2,自引:0,他引:2  
研究了微波陶瓷凝胶注模成型工艺,包括浆料制备,成型工艺及用微波介质陶瓷制备成介质柱谐振器,观察了介质陶瓷的微观形貌,用Hakki-colernan开式腔圆柱介质谐振法对其性能参数进行测量,并与用干压成翌壬艺制备的样品进行比较分析,得出用凝胶注模法用于制备微波陶瓷(Ba6-3x(Sm1-y Ndy)8+2x Ti18 O54),与干压法制备的样品有相当的介电常数,而无载品质因数值略高,且样品致密、缺陷少,组分更为均匀。  相似文献   

17.
Na补偿的(Na,Bi)TiO3-Ba (Zr,Ti)O3无铅压电陶瓷   总被引:1,自引:0,他引:1  
研究了(1-y)(Na0.5Bi0.5)TiO3-yBa(ZrxTi1-x)O3无铅压电陶瓷,获得压电应变常数d33高达185 pC/N的0.94(Na0.5Bi0.5)TiO3-0.06Ba(Zr0.055Ti0.945)O3压电陶瓷。添加0.04%摩尔过量Na2CO3的0.94(Na0.5Bi0.5)TiO3-0.06Ba(Zr0.055Ti0.945)O3高性能压电陶瓷d33高达195 pC/N。研究发现添加Na2CO3添加量至0.04%摩尔,Na起到软性添加物的作用,添加量超过0.04%,Na起到硬性添加物的作用.理论解释了过量Na的这一特性.为了降低介电损耗,对0.94(Na0.5Bi0.5)TiO3-0.06 Ba(Zr0.055Ti0.945)O3陶瓷进行了(Ce,Mn)掺杂改性研究。  相似文献   

18.
采用固相反应法,以Ca0.3(Li0.5Sm0.5)0.7TiO3(CLST—0.7)陶瓷为基料,掺杂质量分数为10%的CaO-B2O3-SiO2(CBS)氧化物和2%~6%的Li2O-B2O3-SiO2-CaO-Al2O3(LBSCA)玻璃料为复合烧结助剂,研究了LBSCA掺杂量对CLST—0.7陶瓷的低温烧结行为及微波介电性能的影响。结果表明,复合烧结助剂掺杂促使CLST—0.7陶瓷烧结温度降低了200~300℃,并保持良好的微波介电性能。掺杂质量分数10%CBS和4%LBSCA的CLST—0.7陶瓷经950℃烧结5h后,其εr=71.84,Q·f=1967GHz,τf=41.7×10–6/℃。  相似文献   

19.
采用固相法在880~975℃下烧结制备了添加w(CuO)为2.00%,w(B2O3)为3.00%及w(SnO2)为0.15%的ZnNb2O6-1.75TiO2基复合微波介质陶瓷。研究了该陶瓷的低温烧结机理、微波介电性能及其在多层片式陶瓷电容器中的应用。结果显示:随着烧结温度的提高,物相由Zn2TiO4,Zn0.17Nb0.33Ti0.5O2,ZnNb2O6向ZnTiNb2O8转变,εr和τf减小,Q·f升高。但当t≥975℃时,出现过烧现象,晶体缺陷增多恶化了材料的Q·f。在950℃烧结4h时,得到最好的介电性能:εr=36.7,τf=–22.6×10–6/℃,Q·f=18172.2GHz。且在此温度下制备的多层片式陶瓷电容与内电极Ag90Pd10的兼容性良好,Res为0.3426Ω,tanδ为9×10–5,可靠性良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号