首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
杨河祥  李友奎  耿强生 《山西建筑》2007,33(28):185-186
通过对不同掺入比和龄期水泥土强度室内试验的研究,揭示了河西地区水泥土的变形特征和破坏形式,并得出了水泥掺入比和龄期对水泥土强度的影响规律,提出了“临界龄期”的概念,以期对水泥土搅拌法的设计应用提供一定的指导作用.  相似文献   

2.
有机质含量对水泥土强度的影响及对策   总被引:3,自引:0,他引:3  
采用有机质含量比较高的盐城泻湖相软土进行了大量的水泥土加固室内试验,并对试验结果进行了分析,得到了强度随龄期增长的公式,并探讨了有机质对强度的不利影响,提出了抵抗有机质含量对水泥土强度影响的对策。  相似文献   

3.
碳酸钠对水泥土强度的影响   总被引:1,自引:0,他引:1  
在其它条件恒定时,研究了碳酸钠掺量对水泥土强度的影响.对比水泥土7d和28 d的强度发现,水泥土的强度总体上随碳酸钠掺量的增加先增大后减小;随龄期增长,水泥土强度峰值前移.分析原因主要为:碳酸钠促进水化作用和抑制硅酸凝胶转化为沉淀的双重功能,碳酸钠抑制了对水泥土后期强度增长有重要作用的火山灰效应等.  相似文献   

4.
低掺量水泥土物理力学特性试验研究   总被引:1,自引:0,他引:1  
蒋水文 《山西建筑》2007,33(18):172-173
通过界限含水量试验研究了不同掺量水泥对水泥土液、塑限的影响,利用无侧限抗压强度实验研究了水泥土在饱水养生条件下的强度特性,并得出了一些对工程有益的结论。  相似文献   

5.
用低掺量水泥加固3种不同的土进行室内试验研究,测试了不同Ca(OH)2掺量及不同龄期下3种水泥土的无侧限抗压强度。分析了随Ca(OH)2掺量的增加,不同龄期的3种水泥土无侧限抗压强度变化规律及原因。试验结果表明:水泥红粘土强度随Ca(OH)2掺量的增加提高最为明显,粉质粘土次之,砂土最弱。分析原因是由于土体的细度对水泥土强度影响较大。土体越细,土体中粘土矿物越多, Ca(OH)2掺量的增加促进了更多的离子交换作用和火山灰作用的发生,从而提高了水泥土强度。试验所用的3种土中红粘土最细,所以水泥红粘土强度随Ca(OH)2掺量的增加提高最为明显。  相似文献   

6.
水泥土的配比试验与工程特性研究   总被引:2,自引:0,他引:2  
通过对某液化气码头工程水泥土加固体的室内配比试验,探求水泥土的工程特性、其强度随水泥掺入比和龄期变化的增长规律,讨论不同水泥品种和水灰比及外掺剂对水泥土强度的影响程度,最后给出一种较为合理的配比方案和强度试验指标。为工程的设计和应用提供了可靠的工程依据,并对类似工程的加固具有一定的参考价值。  相似文献   

7.
通过室内实验,探讨水泥土在不同龄期,不同含水量,不同水泥与粉煤灰配比条件下的抗压强度的变化规律,确定水泥土中的水泥粉煤灰的最佳配比。  相似文献   

8.
污染土对水泥土强度和电阻率影响的试验研究   总被引:1,自引:0,他引:1  
为揭示污染土对水泥土的影响规律,引入电阻率法作为描述强度和污染特征的手段,分别以3种液体(自来水、生活污水、造纸厂污水)、粉质黏土、两种水泥(普通硅酸盐水泥、矿渣硅酸盐水泥)制作的水泥土为研究对象。首先对比分析3种液体对土体液塑限指标的影响,其次研究不同龄期、水泥类型、污染土类型等条件下水泥土抗压强度和电阻率的变化规律,最后建立电阻率和抗压强度的定量关系。结果表明:污染后土样的液限、塑限均增大,而塑性指数减小;水泥土抗压强度和电阻率均随龄期的增加而呈对数增长;污染土降低了水泥土的抗压强度和电阻率,但是相同龄期下矿渣硅酸盐水泥土的抗压强度和电阻率均高于普通硅酸盐水泥土,说明土体污染后,矿渣水泥对水泥土有一定的抗劣化能力;在不同龄期和污染土条件下,普通硅酸盐水泥土和矿渣硅酸盐水泥土的抗压强度均随着其电阻率线性增长;相比矿渣硅酸盐水泥土,电阻率对普通硅酸盐水泥土更敏感。  相似文献   

9.
污染环境对水泥土力学特性影响的试验研究   总被引:5,自引:2,他引:5  
采用模拟试验的方法探讨了在各种污染环境因素影响下(清水、不同化学溶液、不同浓度等)水泥土力学特性在不同龄期的表现,分析了其相应的荷载位移曲线变化,得出了水泥土在各种污染环境下的抗压强度与侵蚀历时的关系,结果表明硫酸对水泥土的侵蚀作用显著,污染环境中的化学成分和浓度对水泥土的抗压强度有着重要的影响。  相似文献   

10.
赵文晶  董晓强 《山西建筑》2010,36(8):187-188
以两种类型的水泥(普通硅酸盐水泥和矿渣硅酸盐水泥)搅拌形成的水泥土试块为研究对象,通过室内试验定量分析了其无侧限抗压强度、电阻率、龄期之间的相互关系,试验结果表明:这两种水泥土试块的无侧限抗压强度和电阻率均随着龄期对数的增加成线性函数增大,无侧限抗压强度与其电阻率成线性增长关系。  相似文献   

11.
粉煤灰、矿渣及硅灰对水泥胶砂流动性及早期强度的影响   总被引:5,自引:1,他引:5  
本文在试验的基础上研究了矿物掺合料单掺和复掺时对水泥胶砂流动性及1d早期强度的影响。试验结果表明,与不掺掺合料的基准胶砂相比,矿物掺合料的使用可以提高胶砂的流动度,但同时极大地降低了胶砂的早期强度。与单掺粉燥灰的胶砂相比,多种矿物掺合料复掺可以提高胶砂的1d强度,但会降低胶砂的流动性。  相似文献   

12.
采用废旧橡胶粉等体积取代部分石硝的方法,将橡胶粉掺入水泥稳定碎石中,研究橡胶粉掺量对水泥稳定碎石无侧限抗压强度的影响。结果表明,橡胶粉掺量10kg·m-3时的水泥稳定碎石的无侧限抗压强度是基准水泥稳定碎石的98.4%,大于设计强度;橡胶粉掺量20kg·m-3和30 kg·m-3时分别是基准水泥稳定碎石的90.5%和85.7%,均小于设计强度。橡胶粉掺量大,水泥稳定碎石的无侧限抗压强度降低;橡胶粉掺量一定时,水泥稳定碎石的无侧限抗压强度可满足设计要求。  相似文献   

13.
通过无侧限抗压强度试验,探究水泥、粉煤灰、玻璃纤维掺量、硫酸盐侵蚀对水泥土抗压强度的影响规律。研究发现:水泥掺量与水泥土抗压强度成正比关系。粉煤灰掺量适当时(不超过6%)可以提高水泥土抗压强度,粉煤灰对水泥土强度增长作用主要在于粉煤灰的微集料效应和活性效应。玻璃纤维掺量为0.2%时,水泥土抗压强度最高,玻璃纤维对水泥土强度的贡献主要在于玻璃纤维的加筋作用。受不同浓度Na2SO4溶液侵蚀作用后,随着侵蚀时间的延长,水泥土抗压强度均先提高后降低。  相似文献   

14.
针对土壤固化处理要求,利用不同激发剂制备土壤固化专用特种砂浆,研究了特种砂浆的物理力学性能及其土壤固化效果。结果表明,固定激发剂掺量情况下,几种土壤固化专用特种砂浆均具有良好的物理力学性能和土壤固化作用;其中以硫酸钠为激发剂的特种砂浆综合性能较佳,具体表现为流动度较大、凝结时间略长、抗折和抗压强度最高,土壤固化效果最好,固化土强度发展快,且28 d无侧限抗压强度最高。  相似文献   

15.
杨静  陶永靖 《山西建筑》2014,(15):115-116
对几种常见的复合水泥土进行了分析,论述了强度影响因素对其强度的影响和强度增加机理,通过对复合水泥土进行对比分析,提出了新的见解,对于研究新型复合水泥土具有一定的参考作用。  相似文献   

16.
通过对筛选的19家甘肃机制砂生产厂家的生产情况进行调研,基于灰色关联分析理论,研究不同厂家机制砂的水泥胶砂强度,分析机制砂相关指标与水泥胶砂强度的内在规律,间接得到控制水泥胶砂强度的关键参数,对机制砂的生产和使用起到控制作用.结果表明,影响水泥胶砂抗压、抗折强度的主要因素是机制砂的石粉含量、亚甲蓝值和粉料质量指数.  相似文献   

17.
Mg2+和SO42-相互影响对水泥土强度影响的试验研究   总被引:6,自引:0,他引:6       下载免费PDF全文
水泥土搅拌桩周围环境中的Mg2+和SO42-对水泥土及其桩体的力学性能具有很大的影响。通过模拟试验的方法探讨了在不同硫酸镁溶液环境下不同龄期的水泥土表观和抗压强度变化规律,得出了水泥土表面腐蚀程度随着腐蚀时间的增长和硫酸镁浓度的增大而增加,水泥土抗压强度随硫酸镁浓度的增大而减小;分析了硫酸镁溶液的Mg2+浓度和SO42-浓度随时间的变化关系,得出随着时间的增长Mg2+浓度呈减小趋势,而SO42-浓度则呈抛物线型。研究认为:水泥土强度改变与环境中的Mg2+浓度和SO42-浓度密切相关。在此基础上建立了水泥土环境下考虑Mg2+浓度和SO2-4浓度相互影响的水泥土强度模型,经对比预测值与实测值,证明两者比较接近,该关系具有一定的可行性,可供工程设计参考。  相似文献   

18.
通过引入硅灰来改善铝酸盐水泥后期强度倒缩的问题,采取内掺的方式,研究了硅灰掺量对铝酸盐水泥胶合剂性能的影响.结果表明:适宜掺量下,硅灰能大大改善铝酸盐水泥的工作性能、力学性能和收缩性能,当内掺8%硅灰时,其早期抗压强度虽低于空白组,但28 d抗压强度接近空白组,达到123.6 MPa,且56 d抗压强度持续提高至127...  相似文献   

19.
微硅粉对纤维增强水泥物理性能影响的试验研究   总被引:1,自引:0,他引:1  
利用微硅粉作为矿物掺合料,研究了微硅粉对纤维增强水泥物理性能(抗折强度、抗冲击强度、吸水率、容重和干缩率)的影响。研究结果表明,微硅粉的掺入,明显提高了纤维增强水泥的抗折强度、抗冲击强度,降低了吸水率,体积质量、干缩率略有增大。在此基础上,着重分析了微硅粉对纤维增强水泥物理性能影响的作用机理。同时,探讨了微硅粉在生产应用中的最佳掺量及常见的几个应用问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号