首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Activities at a former fire training area at Robins Air Force Base in Georgia, USA resulted in contamination of groundwater with a mixture of trichloroethylene (TCE) and chlorobenzene (CB). Results from the field investigation suggest that intrinsic bioremediation process is occurring, which caused the decrease in TCE and CB concentrations, and increase in TCE degradation byproducts [e.g., dichloroethylene isomers (DCEs), vinyl chloride (VC)] concentrations. Contaminated groundwater samples collected from this site were used to conduct microbial enumeration tests, and used as the inocula for microcosm establishment. Results from the microbial enumeration study indicate that methanogenesis was the dominant biodegradation pattern within the source and mid-plume areas, and the aerobic biodegradation process dominated the downgradient area. Laboratory microcosm experiments were conducted to evaluate the feasibility of using CB as the primary substrate to enhance the intrinsic biodegradation of TCE. Microcosm results suggest that CB can serve as the primary substrate (electron donor), and enhance TCE biodegradation to less-chlorinated compounds under both aerobic cometabolism and reductive dechlorination conditions.  相似文献   

2.
Arsenic concentrations above acceptable standards for drinking water have been detected in many countries and this should therefore is a global issue. The presence of arsenic in subsurface aquifers and drinking water systems is a potentially serious human health hazard. The current population growth in Pakistan and other developing countries will have direct bearing on the water sector for meeting the domestic, industrial and agricultural needs. Pakistan is about to exhaust its available water resources and is on the verge of becoming a water deficit country. Water pollution is a serious menace in Pakistan, as almost 70% of its surface waters as well as its groundwater reserves have contaminated by biological, organic and inorganic pollutants. In some areas of Pakistan, a number of shallow aquifers and tube wells are contaminated with arsenic at levels which are above the recommended USEPA arsenic level of 10 ppb (10 μg L−1). Adverse health effects including human mortality from drinking water are well documented and can be attributed to arsenic contamination. The present paper reviews appropriate and low cost methods for the elimination of arsenic from drinking waters. It is recommended that a combination of low cost chemical treatment like ion exchange, filtration and adsorption along with bioremediation may be useful option for arsenic removal from drinking water.  相似文献   

3.
Waste green sands are byproducts of the gray iron foundry industry that consist of sand, binding agents, organic carbon, and residual iron particles. Because of their potential sorptive and reactive properties, tests were conducted to determine the feasibility of using waste green sands as a low cost reactive medium for groundwater treatment. Batch and column tests were conducted to determine the reactivity, sorptive characteristics, and transport parameters for trichloroethylene (TCE) solutions in contact with green sands. Normalized rate constants for TCE degradation in the presence of iron particles extracted from green sands were found to be comparable to those for Peerless iron, a common medium used to treat groundwater. Rate constants and partition coefficients obtained from the batch tests were found to be comparable to those from the column tests. Analytical modeling shows that reactive barriers containing green sand potentially can be used to treat contaminated groundwater containing TCE at typical concentrations observed in the field.  相似文献   

4.
Fenton's reagent is the result of reaction between hydrogen peroxide (H(2)O(2)) and ferrous iron (Fe(2+)), producing the hydroxyl radical (-*OH). The hydroxyl radical is a strong oxidant capable of oxidizing various organic compounds. The mechanism of oxidizing trichloroethylene (TCE) in groundwater and soil slurries with Fenton's reagent and the feasibility of injecting Fenton's reagent into a sandy aquifer were examined with bench-scale soil column and batch experiment studies. Under batch experimental conditions and low pH values ( approximately 3), Fenton's reagent was able to oxidize 93-100% (by weight) of dissolved TCE in groundwater and 98-102% (by weight) of TCE in soil slurries. Hydrogen peroxide decomposed rapidly in the test soil medium in both batch and column experiments. Due to competition between H(2)O(2) and TCE for hydroxyl radicals in the aqueous solutions and soil slurries, the presence of TCE significantly decreased the degradation rate of H(2)O(2) and was preferentially degraded by hydroxyl radicals. In the batch experiments, Fenton's reagent was able to completely dechlorinate the aqueous-phase TCE with and without the presence of soil and no VOC intermediates or by-products were found in the oxidation process. In the soil column experiments, it was found that application of high concentrations of H(2)O(2) with addition of no Fe(2+) generated large quantities of gas in a short period of time, sparging about 70% of the dissolved TCE into the gaseous phase with little or no detectable oxidation taking place. Fenton's reagent completely oxidized the dissolved phase TCE in the soil column experiment when TCE and Fenton's regent were simultaneously fed into the column. The results of this study showed that the feasibility of injecting Fenton's reagent or H(2)O(2) as a Fenton-type oxidant into the subsurface is highly dependent on the soil oxidant demand (SOD), presence of sufficient quantities of ferrous iron in the application area, and the proximity of the injection area to the zone of high aqueous concentration of the target contaminant. Also, it was found that in situ application of H(2)O(2) could have a gas-sparging effect on the dissolved VOC in groundwater, requiring careful attention to the remedial system design.  相似文献   

5.
The coupling adsorption and degradation of trichloroethylene (TCE) through dechlorination using synthetic granular activated carbon and zerovalent iron (GAC-ZVI) composites was studied. The GAC-ZVI composites were prepared from aqueous Fe2+ solutions by impregnation with and without the use of a PEG dispersant and then heated at 105 °C or 700 °C under a stream of N2. Pseudo-first-order rate constant data on the removal of TCE demonstrates that the adsorption kinetics of GAC is similar to those of GAC-ZVI composites. However, the usage of GAC-ZVI composites liberated a greater amount of Cl than when ZVI was used alone. The highest degree of reductive dechlorination of TCE was achieved using a GAC-ZVI700P composite (synthesized using PEG under 700 °C). A modified Langmuir-Hinshelwood rate law was employed to depict the behavior of Cl liberation. As a result, a zero-order Cl liberation reaction was observed and the desorption limited TCE degradation rate constant decreased as the composite dosage was increased. The GAC-ZVI composites can be employed as a reactive GAC that is not subject to the limitations of using GAC and ZVI separately.  相似文献   

6.
In this research, the adsorption equilibria of trichloroethylene (TCE) and benzene vapors onto hypercrosslinked polymeric resin (NDA201) were investigated by the column adsorption method in the temperature range from 303 to 333 K and pressures up to 8 kPa for TCE, 12 kPa for benzene. The Toth and Dubinin–Astakov (D–A) equations were tested to correlate experimental isotherms, and the experimental data were found to fit well by them. The good fits and characteristic curves of D–A equation provided evidence that a pore-filling phenomenon was involved during the adsorption of TCE and benzene onto NDA-201. Moreover, thermodynamic properties such as the Henry's constant and the isosteric enthalpy of adsorption were calculated. The isosteric enthalpy curves varied with the surface loading for each adsorbate, indicating that the hypercrosslinked polymeric resin has an energetically heterogeneous surface. In addition, a simple mathematic model developed by Yoon and Nelson was applied to investigate the breakthrough behavior on a hypercrosslinked polymeric resin column at 303 K and the calculated breakthrough curves were in high agreement with corresponding experimental data.  相似文献   

7.
An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO3-N50 mg L−1) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8 h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO3-N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO2 produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate.  相似文献   

8.
This paper demonstrates significant effects on phenanthrene degradation in diesel contaminated soil by the addition of organic amendments such as whey and fermented whey. Both amount of amendment added and mode of administration was shown to be decisive. There was a strong positive effect on the 14C-mineralization of phenanthrene by multiple (bi-weekly) additions of fermented whey 210 mg dw kg−1 soil dw (FW multi) and also by single dose addition of 2100 mg dw sweet whey kg−1 soil dw (SW high). The most prominent effects on phenanthrene degradation kinetics were a five to fifteen fold increase in the linear growth term (k2) and a 23-27% increase in bioavailability factor S0 for SW high and FW multi respectively. Also, total mineralization at the end of the experiment increased from 46% in the control to 66 and 71% respectively and the lag time was reduced from 21 to 15 days by multiple addition of fermented whey. The most significant stimulating effects on phenanthrene degradation kinetics could be attributed to lactate and vitamins. This study demonstrates a more complex dependence of carbon sources and growth factors for an aromatic compound such as phenanthrene in comparison to hexadecane.  相似文献   

9.
The photo-catalytic degradation of an azo dye − Amaranth (AM) - has been investigated in TiO2/UV aqueous suspensions. The results obtained from the experiments during H2O2/TiO2 addition show that the highest decolorization rate is provided by the combination of (UV + TiO2 + H2O2). The decolorization efficiencies were 17%, 26%, 38% and 64% in the runs UV, UV + H2O2, UV + TiO2 and (UV + TiO2 + H2O2) after approximately 100 min illumination periods, respectively. The observed dye degradation rates followed pseudo-first order kinetics with respect to the substrate concentration under the experimental conditions used. Different experimental conditions, such as temperature, pH and presence of electron acceptor were investigated. The temperature effect was investigated at the range of 293-313 K and it was observed that decolorization rate increased by the increase in temperature. Chemical oxygen demand and dye absorbance of the photodegraded dye solution substantially decreased. Effect of pH was also investigated and it was observed that the lower the pH the higher the degradation. In addition, an enhancement in the photodegradation rate was observed by the addition of hydrogen peroxide as an electron acceptor. The adsorption trends of Amaranth at various initial concentrations followed the Langmuir isotherm trend. This work adds to the global discussion on the role of the advanced oxidation processes in water treatment.  相似文献   

10.
One mild multiple emulsions was used for the fabrication of hollow polystyrene (PS) spheres. Polystyrene was dissolved in a volatile organic solvent to form the O phase, then an aqueous phase containing a surfactant was transferred into above phase to form an oil-in-water (Win/O) emulsion, followed by addition of Win/O emulsion in the external Wout phase, and solvent evaporation. Final product with diameter of 150 μm, surface roughness of 30 nm, and sphericity of 98.0% was obtained. The possible influences on the formation of PS hollow sphere were also discussed.  相似文献   

11.
An easy-handling calcination method has been used to eliminate the trap energy levels of hexagonal cadmium sulfide (CdS). The treated CdS exhibited extremely high photocatalytic activity for H2 production under visible light irradiation. The rate of photocatalytic H2 evolution has been dramatically enhanced by 55.8 times to 118 μmol h−1 and further improved by 6.3 times to 749 μmol h−1 after loading with 0.2 wt% Pt co-catalyst.  相似文献   

12.
In situ bioremediation using carbohydrate was evaluated as an in situ treatment alternative for trichloroethene (TCE) and cis-1,2-dichloroethene (cDCE) in groundwater containing high nitrate concentrations. Upon addition of carbohydrate to groundwater, sequential reduction of electron acceptors was observed, where nitrate was reduced early in the pilot test, followed by sulfate and TCE. Reduction of cDCE to vinyl chloride and ethene occurred in conjunction with increased iron and manganese, and increased methane concentrations, approximately 7 months into the evaluation period, following depletion of nitrate and sulfate. TCE, cDCE, and vinyl chloride concentrations decreased from approximately 500 to >10 microg/L within 21 months of operation.  相似文献   

13.
Self-template route to MnO2 hollow structures for supercapacitors   总被引:1,自引:0,他引:1  
Birnessite-type MnO2 hierarchical hollow structures were prepared through a self-template route, by the direct reaction between the aqueous solution of KMnO4 and solid MnCO3 precursor crystals, and followed by the removal of MnCO3 core with HCl. Field emission scanning microscopy (FESEM) images indicate that the shells of hierarchical hollow structures consist of the interconnected sheets with a thickness of about 30 nm, and transmission electron microscopy (TEM) images show that the thickness of the shells can be adjusted over a range from 50 to 80 nm by changing the molar ratio of MnCO3/KMnO4. The electrochemical properties of the as-prepared MnO2 were characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge tests in 1 M Na2SO4 solution. The sample obtained at a higher MnCO3/KMnO4 molar ratio (i.e., 50:1) shows a relatively higher specific capacitance of 169 F g− 1 than 111 F g− 1 of the sample obtained under a lower molar ratio of 25:1 at the current density of 250 mA g− 1.  相似文献   

14.
The sinterability of manganese oxide (MnO2) doped hydroxyapatite (HA) ranging from 0.05 to 1 wt% was investigated. Green samples were prepared and sintered in air at temperatures ranging from 1000 to 1400 °C. Sintered bodies were characterized to determine the phase stability, grain size, bulk density, hardness, fracture toughness and Young's modulus. XRD analysis revealed that the HA phase stability was not disrupted throughout the sintering regime employed. In general, samples containing less than 0.5 wt% MnO2 and when sintered at lower temperatures exhibited higher mechanical properties than the undoped HA. The study revealed that all the MnO2-doped HA achieved >99% relative density when sintered at 1100-1250 °C as compared to the undoped HA which could only attained highest value of 98.9% at 1150 °C. The addition of 0.05 wt% MnO2 was found to be most beneficial as the samples exhibited the highest hardness of 7.58 GPa and fracture toughness of 1.65 MPam1/2 as compared to 5.72 GPa and 1.22 MPam1/2 for the undoped HA when sintered at 1000 °C. Additionally, it was found that the MnO2-doped samples attained E values above 110 GPa when sintered at temperature as low as 1000 °C if compared to 1050 °C for the undoped HA.  相似文献   

15.
Castings were prepared from both experimental and industrial 319 alloy melts containing 0–0.6 wt% Mg. Test bars were cast in two different cooling rate molds, a star-like permanent mold and an L-shaped permanent mold, with DASs of 24 μm and 50 μm, respectively. The bars were tempered at 180 °C (T6 treatment) and 220 °C (T7 treatment) for 2–48 h. The results showed that Mg content, aging conditions, and cooling rate have a significant effect on the microstructure of both experimental and industrial alloys and, consequently, on the hardness. The addition of Mg resulted in the precipitation of the β-Mg2Si, Q-Al5Mg8Cu2Si6, π-Al8Mg3FeSi6 and of the block-like θ-Al2Cu phases. The Mg and Cu, as well as the higher cooling rates improved the hardness values, especially in the T6 heat-treated condition, whereas the addition of Sr decreased these values.  相似文献   

16.
The photodegradation of trichloroethene (TCE) with or without nonaqueous phase liquids (NAPL) by ultraviolet irradiation in surfactant solutions was examined in this study. The photodecay of TCE was studied at monochromatic 254 nm UV lamps. The effects of the type of surfactants, initial surfactant concentrations, pH levels and NAPL concentrations were examined to explore the photodecay of TCE. All the photodegradation of TCE followed pseudo-first-order decay kinetics at various conditions. It was found that Brij 35 overdose and higher initial pH levels may retard or inhibit the photodecay of TCE, mainly due to protons, intermediate generation and change of surfactant structure in the processes. The optimal condition for TCE photodecay was suggested based on the analysis of kinetics data, from which the reaction mechanism of TCE in the presence of NAPL form was also studied. In general, the reactions of TCE in micellar solution and NAPL pool can be considered as independent pathways due to the low molecule diffusion between the two phases.  相似文献   

17.
This study aims to enhance the endurance of MoS2 coating by applying a thin layer of Au (∼ 80 nm) on MoS2 surface. Experimental results show that the addition of Au film increases the endurance of MoS2/Au over equivalent coatings without Au. The friction coefficient rapidly decreases to a stable value (μ ∼ 0.045) after about 100 cycles sliding. After more than 15,000 cycles, the friction coefficient gradually increased to a second stable value (μ ∼ 0.15). An average endurance of over 50,000 cycles was measured in this case. The Au or Au-MoS2 composite layer can effectively prevent oxygen or moisture reaction with MoS2 and hence significantly increases the wear life.  相似文献   

18.
β-MnO2 with semi-tubular morphology has been prepared in a mixed solution of KMnO4 and MnCl2 by a facile hydrothermal route without using templates, catalysts, and organic reagents. The structure of the obtained β-MnO2 is systematically investigated by XRD, SEM, and TEM. Results show that the as-prepared β-MnO2 has novel semi-tubular morphology, and its particle shows a diameter of 300–400 nm and length up to 1–4 μm. The prepared β-MnO2 shows a good electrochemical performance, and delivers a discharge capacity of 195 mAh g−1 after 40 cycles between voltage limit of 1.5 and 4.5 V at a constant current density of 20 mA g−1.  相似文献   

19.
Speciation of selenium in groundwater is essential from the viewpoint of toxicity to organisms and biogeochemical cycling. Selenium speciation in groundwater is controlled by aquifer redox conditions, microbial transformations, dissolved oxygen (DO) and other redox couples. A suburban area of Chennai city in India, where improper waste disposal measures have been practiced is selected for this study. Se(IV), Se(VI) and other hydrochemical parameters were monitored in shallow ground water during pre- and post-monsoon seasons for a period of three years. The objective of the study was to investigate the effect of groundwater recharge on selenium speciation. The concentration of Se(IV), and Se(VI) ranged between 0.15-0.43 μg L−1 and 0.16-4.73 μg L−1, respectively. During post-monsoon period the concentration of Se(IV), and Se(VI) ranged between 0.15-1.25 μg L−1 and 0.58-10.37 μg L−1, respectively. Se(VI) was the dominant species of selenium during the pre- and post-monsoon periods. During the post-monsoon periods, leaching of selenium from soil was more effective due to the increased oxidizing nature of the groundwater as indicated by the DO and redox potential (Eh) measurements. This finding has important implications on the behavior of selenium in groundwater, and also on the health of people consuming groundwater from seleniferous areas.  相似文献   

20.
The purpose of this study was to investigate the changes of the nanostructured surface of Ti-35Ta-xZr alloys for dental application resulting from changes in anodization factors. TiO2 nanotubes were formed on Ti-35Ta-xZr alloys by anodization in H3PO4-containing NaF solutions. Anodization was carried out using a scanning potentiostat. Microstructures of the alloys were examined by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). Microstructures of the Ti-35Ta-xZr alloys were changed from α" phase to β phase, and morphologies changed from a needle-like to an equiaxed structure, with increasing Zr content. As the Zr content increased from 3 to 7 to 15 wt.%, the average thickness of the TiO2 nanotubes increased from 4.5 μm to 6.1 μm to 9.0 μm. When the anodizing potential was increased from 3 V to 10 V, the thickness of the nanotube layers increased from about 0.5 μm to 9.5 μm. As the anodization time increased from 30 min to 180 min at 10 V, the nanotube thickness increased from 4 μm to 9.5 μm. The amorphous oxide phase in the nanotubes transformed to anatase and rutile phases of TiO2 by heat treatment above 300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号