首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Guo J  Du Y  Lan Y  Mao J 《Journal of hazardous materials》2011,186(2-3):2083-2088
In this study, the photodegradation process of methyl orange (MO) catalyzed by Fe(III) and citric acid and the reaction kinetics were investigated in detail at pHs from 2 to 8. The results show that the photodegradation of MO is slow in the presence of Fe(III) or citric acid alone. However, it is markedly enhanced when Fe(III) and citric acid coexist. High initial citric acid or initial Fe(III) concentrations lead to increased photodegradation of MO. And Fe(III) citrate mediated photodegradation of MO is optimized at pH 6. The photoproduction of hydroxyl radicals (·OH) in different catalytic systems was determined by HPLC. And the concentrations of Fe(II) and citric acid concentration in the process of the reaction were analyzed. The photodegradation of MO obeys to pseudo-zero order kinetics with respect to MO and the degradation reaction occurs in two phases. At the initial initiation stage, degradation rate is relatively slow, and significantly increases at a later acceleration stage.  相似文献   

2.
Degradation of trichloroethylene by Fenton reaction in pyrite suspension   总被引:2,自引:0,他引:2  
Che H  Bae S  Lee W 《Journal of hazardous materials》2011,185(2-3):1355-1361
Degradation of trichloroethylene (TCE) by Fenton reaction in pyrite suspension was investigated in a closed batch system under various experimental conditions. TCE was oxidatively degraded by OH in the pyrite Fenton system and its degradation kinetics was significantly enhanced by the catalysis of pyrite to form OH by decomposing H(2)O(2). In contrast to an ordinary classic Fenton reaction showing a second-order kinetics, the oxidative degradation of TCE by the pyrite Fenton reaction was properly fitted by a pseudo-first-order rate law. Degradation kinetics of TCE in the pyrite Fenton reaction was significantly influenced by concentrations of pyrite and H(2)O(2) and initial suspension pH. Kinetic rate constant of TCE increased proportionally (0.0030 ± 0.0001-0.1910 ± 0.0078 min(-1)) as the pyrite concentration increased 0.21-12.82 g/L. TCE removal was more than 97%, once H(2)O(2) addition exceeded 125 mM at initial pH 3. The kinetic rate constant also increased (0.0160 ± 0.005-0.0516 ± 0.0029 min(-1)) as H(2)O(2) concentration increased 21-251 mM, however its increase showed a saturation pattern. The kinetic rate constant decreased (0.0516 ± 0.0029-0.0079 ± 0.0021 min(-1)) as initial suspension pH increased 3-11. We did not observe any significant effect of TCE concentration on the degradation kinetics of TCE in the pyrite Fenton reaction as TCE concentration increased.  相似文献   

3.
The objectives of this bench-scale study were to (1) determine the optimal operational parameters and kinetics when potassium permanganate (KMnO4) was applied to in situ oxidize and remediate trichloroethylene (TCE)-contaminated groundwater and (2) evaluate the effects of manganese dioxide (MnO2) on the efficiency of TCE oxidation. The major controlling factors in the TCE oxidation experiments included molar ratios of KMnO4 to TCE (P value) and molar ratios of Na2HPO4 to Mn2+ (D value). Results show that the second-order decay model can be used to describe the oxidation when P value was less than 20, and the observed TCE decay rate was 0.8M(-1)s(-1). Results also reveal that (1) higher P value corresponded with higher TCE oxidation rate under the same initial TCE concentration condition and (2) higher TCE concentration corresponded with higher TCE oxidation rate under the same P value condition. Results reveal that significant MnO2 production and inhibition of TCE oxidation were not observed under acidic (pH 2.1) or slightly acidic conditions (pH 6.3). However, significant reduction of KMnO(4) to MnO2 would occur under alkaline condition (pH 12.5), and this caused the decrease in TCE oxidation rate. Results from the MnO2 production experiments show that MnO2 was produced from three major routes: (1) oxidation of TCE by KMnO4, (2) further oxidation of Mn2+, which was produced during the oxidation of TCE by KMnO4, and (3) reduction of MnO4(-1) to MnO2 under alkaline conditions. Up to 81.5% of MnO2 production can be effectively inhibited with the addition of Na2HPO4. Moreover, the addition of Na2HPO4 would not decrease the TCE oxidation rate.  相似文献   

4.
The degradability of phenol and trichloroethene (TCE) by Pseudomonas putida BCRC 14349 in both suspended culture and immobilized culture systems are investigated. Chitosan beads at a size of about 1-2mm were employed to encapsulate the P. putida cells, becoming an immobilized culture system. The phenol concentration was controlled at 100 mg/L, and that of TCE was studied from 0.2 to 20 mg/L. The pH, between 6.7 and 10, did not affect the degradation of either phenol or TCE in the suspended culture system. However, it was found to be an important factor in the immobilized culture system in which the only significant degradation was observed at pH >8. This may be linked to the surface properties of the chitosan beads and its influence on the activity of the bacteria. The transfer yield of TCE on a phenol basis was almost the same for the suspended and immobilized cultures (0.032 mg TCE/mg phenol), except that these yields occurred at different TCE concentrations. The transfer yield at a higher TCE concentration for the immobilized system suggested that the cells immobilized in carriers can be protected from harsh environmental conditions. For kinetic rate interpretation, the Monod equation was employed to describe the degradation rates of phenol, while the Haldane's equation was used for TCE degradation. Based on the kinetic parameters obtained from the two equations, the rate for the immobilized culture systems was only about 1/6 to that of the suspended culture system for phenol degradation, and was about 1/2 for TCE degradation. The slower kinetics observed for the immobilized culture systems was probably due to the slow diffusion of substrate molecules into the beads. However, compared with the suspended cultures, the immobilized cultures may tolerate a higher TCE concentration as much less inhibition was observed and the transfer yield occurred at a higher TCE concentration.  相似文献   

5.
The photodegradation of 17alpha-ethynylestradiol (EE2) in aqueous solutions induced by UV-light was preliminarily studied in this paper by means of fluorescence, UV and infrared spectra. The result suggested that EE2 in aqueous solutions underwent photodegradation under irradiation with UV disinfection lamp (lambda = 254 nm, 30 W), but the photodegradation was not observed under high pressure mercury lamp (lambda > or = 365 nm, 250 W). The photodegradation of 1.6-20.0 mg/l EE2 in aqueous solutions at a given initial pH value of 6.8 was pseudo-first order reaction. Increasing the initial concentration of EE2 lowered the photodegradation rate. The photodegradation rate of EE2 reached the lowest value at pH about 5.0, higher pH values of 6.0-8.0 benefited the photodegradation. Ferric ions can promote the photodegradation of EE2 in aqueous solutions at pH value of 2.0-5.0.  相似文献   

6.
The oxidation of fresh and saline wastewater containing an endocrine disrupting chemical (butylated hydroxyanisole, BHA) under different reaction conditions by ozonation and O(3)/H(2)O(2) was investigated at various pH levels. The observed pseudo-first-order reaction kinetics was justified through a combined direct ozone and indirect radical oxidation approach for the ozonation process. The BHA decay rates increased with the increase of the solution pH, but decreased as the NaCl concentration increased because of the consumption of ozone by chloride. A kinetic model was therefore derived for predicting BHA degradation at various initial pH levels and NaCl concentrations. For the O(3)/H(2)O(2) and O(3)/H(2)O(2)/Cl(-) processes, the rate of BHA removal was investigated at hydrogen peroxide concentration ranged from 0.5 to 5mM at pH 7. Different optimal H(2)O(2) dosages and decay rates were found for both processes due to the participation of reactions among O(3), H(2)O(2), OH* and Cl(-) as discussed in the paper.  相似文献   

7.
The industrial solvent trichloroethylene (TCE) is among the most ubiquitous chlorinated solvents found in groundwater contamination. The main objectives of this study were to evaluate the feasibility of using non-ionic surfactant Simple Green™ (SG) to enhance the oxidative dechlorination of TCE by potassium permanganate (KMnO4) employing a continuous stir batch reactor system (CSBR) and column experiments. The effect of using surfactant SG to enhance the biodegradation of TCE via aerobic cometabolism was also examined. Results from CSBR experiments revealed that combination of KMnO4 with surfactant SG significantly enhanced contaminant removal, particularly when the surfactant SG concentrated at its CMC. TCE degradation rates ranged from 74.1% to 85.7% without addition of surfactant SG while TCE degradation rates increased to ranging from 83.8% to 96.3% with presence of 0.1 wt% SG. Furthermore, results from column experiments showed that TCE was degraded from 38.1 μM to 6.2 μM in equivalent to 83.7% of TCE oxidation during first 560 min reaction. This study has also demonstrated that the addition of surfactant SG is a feasible method to enhance bioremediation efficiency for TCE contaminated groundwater. The complete TCE degradation was detected after 75 days of incubation with both 0.01 and 0.1 wt% of surfactant SG addition. Results revealed that surfactant enhanced chemical oxidation and bioremediation technology is one of feasible approaches to clean up TCE contaminated groundwater.  相似文献   

8.
Removal of the antibiotic tetracycline (TC) by TiO2 and the mesoporous binary system TiO2-SiO2 have been studied in batch experiments by performing adsorption isotherms/kinetics and photodegradation kinetics under different conditions of pH, supporting electrolyte concentration, temperature, adsorbent amount, and TiO2-loading. On the one hand, the adsorption of TC on the studied materials is strongly dependent on pH, increasing as pH decreases. The adsorption mechanism, controlled by diffusion processes, is strongly related to electrostatic attractions and H-bond formations mainly between amide, carbonylic and phenolic groups of the antibiotic and the functional groups of TiO2. The adsorption capacity at constant pH increases in the order TiO2 < TiO2-SiO2 mainly due to the highly surface area that the silica offers and to the homogenously dispersion of the TiO2 nanocrystallites. On the other hand, the photodegradation rate is affected by the presence of the studied materials at several pH, although its photocatalytic activities are more important at pH 7 or lower. The photodegradation mechanisms seem to be related to the formation of OH radicals which are responsible for the decomposition of TC. The composed titania-silica materials might act not only as an excellent adsorbent but also act as an alternative photocatalyst for pollution control.  相似文献   

9.
The influence of trichloroethene (TCE) dechlorinating mixed cultures in dissolution of TCE in nonaqueous phase liquid (NAPL) via biodegradation was observed. Experiments were conducted in batch reactor system with and without marsh soils under 10 and 20 degrees C for 2 months. The dissolution phenomenon in biotic reactors containing mixed cultures was showed temporal increases compared to abiotic reactors treated with biocide. Effective NAPL-water transfer rate (K(m)) calculated in this study showed more than four times higher in biotic reactors than that in abiotic reactors. The results might be attributed to the biologically enhanced dissolution process via dechlorination in reactors. Temperature would be a factor to determine the dissolution rate by controlling bacterial activity. The TCE dechlorination occurred even in an interface of TCE-NAPL that demonstrated no previous TCE biodegradation, suggesting that microbes may be useful in developing source-zone bioremediation system. In conclusion, dechlorinating mixed culture could enhance dissolution in NAPL that may be useful in the application of source zone bioremediation.  相似文献   

10.
Governing mechanisms of dense non-aqueous phase liquid (DNAPL) removal during surfactant and surfactant-foam (SF) flooding were studied by porous-patterned glass model experiments. Physical forces, viscous forces and capillary forces, acting on trichloroethylene (TCE) blobs were quantified to understand DNAPL removal mechanisms during the floods, simultaneously visualizing the removal mechanisms. The viscous force of the remedial fluid was intimately related to TCE removal from the porous medium. The remedial fluid with a high viscous force displaced more TCE blobs. Displacement of residual TCE by the remedial fluid began as viscous pressure of flooding was closed to the capillary pressure of the porous medium. In the region of viscous pressure less than the capillary pressure, residual TCE was either retained or solubilized, not displaced, implying that TCE solubilization was the dominant TCE removal process. Glass porous model visualization validated a dominance of the capillary forces during a surfactant flush and a dominance of the viscous forces of the displacing fluid during a SF flood.  相似文献   

11.
Lei J  Liu C  Li F  Li X  Zhou S  Liu T  Gu M  Wu Q 《Journal of hazardous materials》2006,137(2):1016-1024
To understand the photodegradation of azo dyes in natural aquatic environment, a novel photo-Fenton-like system, the heterogeneous iron oxide-oxalate complex system was set up with the existence of iron oxides and oxalate. Five iron oxides, including gamma-FeOOH, IO-250, IO-320, IO-420 and IO-520, were prepared and their adsorption capacity was investigated in the dark. The results showed that the saturated adsorption amount (gamma(max)) was ranked the order of IO-250 > IO-320 > gamma-FeOOH > IO-420 > IO-520 and the adsorption equilibrium constant (Ka) followed the order of IO-250 > IO-520 > gamma-FeOOH > IO-420 > IO-320. The effect of initial pH value, the initial concentrations of oxalate and orange I on the photodegradation of orange I were also investigated in different iron oxide-oxalate systems. The results showed that the photodegradation of orange I under UVA irradiation could be enhanced greatly in the presence of oxalate. And the optimal oxalate concentrations (C(ox)0) for gamma-FeOOH, IO-250, IO-320, IO-420 and IO-520 were 1.8, 1.6, 3.5, 3.0 and 0.8 mM, respectively. The photodegradation of orange I in the presence of optimal C(ox)0 was ranked as the order of gamma-FeOOH > IO-250 > IO-320 > IO-420 > IO-520. The optimal range of initial pH was at about 3-4. The first-order kinetic constant for the degradation of orange I decreased with the increase in the initial concentration of orange I. Furthermore, the variation of pH, the concentrations of Fe3+ and Fe2+ during the photoreaction were also strongly dependent on the C(ox)0 and iron oxides.  相似文献   

12.
The degradation of Atrazine (ATZ) in an outdoor environment was investigated by varying the ATZ concentration and pH levels and then cross-checked with temperature and sunlight information. The overall decay rate constant of ATZ in outdoor is slower in neutral pH and faster at extreme pH levels, while parallel tests show that higher ATZ concentration leads to slower decay rate constant. Two abiotic mechanisms including direct photolysis and hydrolysis were identified and studied in the laboratory as a comparison. Hydrolysis was found to be a slow process but it is a continuous process, which is critical as the sunlight intensity is weak. Effect of temperature on the hydrolysis was also studied. A model incorporating ATZ decay rate constants, pH levels and temperatures was proposed. Photolysis, though, is a non-continuous process in the environment. It is a fast and dominant process, which contributes 82-45% (depending on pH levels) of overall ATZ decay at outdoor. In natural environment, humic acid can act as photosensitizer and enhance photolysis of ATZ at low concentration (<10 mg/L); while at high concentration of humic acid, retardation of ATZ decay was observed likely due to the scavenging of radicals and light attenuation.  相似文献   

13.
Photodegradation of demeclocycline hydrochloride (DCL) in buffer solutions was studied in absence and presence of some potential photostabilizers under the influence of fluorescent light. Photolysis of DCL solutions followed first-order kinetics, DCL was more stable in acidic pH. Change in ionic strength of the buffer had no effect on the photolysis of DCL. Among the potential photostabilizers tested, reduced glutathione (GTH) was found to be the most effective photoprotective agent. Increase in GTH concentration decreased the photodegradation rate, but this decrease was not significant above 20 μg/ml GTH concentration. The photodegradation of DCL both in presence or absence of GTH was lowest at pH 4.5 citrate buffer, compared to acetate or phosphate buffer. A mixture of 50% (v/v) propylene glycol or 50% (v/v) PEG 400 in phosphate buffer did not demonstrate any photostabilizing effect. Aluminum foil-covered glass vials provided greater photoprotection compared to clear glass or amber glass vials.  相似文献   

14.
The photodegradation mechanism and luminescence efficiency of a series of thin polymer films prepared under a variety of conditions was studied. The conjugated polymer, poly(m-phenylene-co-2,5-dioctoxy-p-phenylenevinylene) (PmPV), is shown by infra-red spectroscopy to degrade via the chain scission of the carbon double bond along the polymer backbone. This causes a reduction in conjugation length and a blue shift in its absorption and photoluminescence (PL) spectra. To reduce photodegradation effects, films were prepared using argon (Ar) gas and were investigated in air and an oxygen free environment. The initial PL intensity increased by over 70% for Ar treated films. The PL decay in air was bi-exponential in nature, with a sharp initial decay linked to atmospheric oxygen, and a longer second decay linked to oxygen embedded in the film. The increase in both PL efficiency and degradation lifetime, coupled with device encapsulation, should significantly improve the performance of electroluminescent devices.  相似文献   

15.
Gallic acid (3,4,5-trihydroxybenzoic acid) is a major pollutant present in the wastewater generated in the boiling cork process, as well as in other wastewaters from food manufacturing industries. Its decay in aqueous solutions has been studied by the action of several oxidation systems: monochromatic UV radiation alone and combined with hydrogen peroxide, Fenton's reagent and the combination Fenton's reagent with UV radiation (photo-Fenton system). The influence of the pH is discussed and the quantum yields are determined in the UV radiation system. Also, the influence of operating variables (initial concentrations of H2O2 and Fe(II), and pH) is established in the Fenton's reaction. The apparent pseudo-first-order rate constants are evaluated in all the experiments conducted in order to compare the efficiency of each one of the processes. Increases in the degradation levels of gallic acid are obtained in the combined processes in relation to the single UV radiation system, due to reactions of the very reactive OH*. These improvements are determined in every process by calculating the partial contribution to the overall decomposition rate of the radical pathways. For the oxidant concentrations applied, the most effective process in removing gallic acid was found to be the photo-Fenton system. The rate constant for the reaction of gallic acid with OH was also determined by means of a competition kinetics model, being its value 11.0+/-0.1 x 10(9)l mol(-1)s(-1).  相似文献   

16.
This study evaluated the performance of a photoreactor packed with TiO2/glass, TiO2 immobilized on glass beads, initiated by UV irradiation, denoted as UV/TiO2/glass, to decompose di-n-butyl phthalate (DBP) in an aqueous solution. The photodegradation rate of DBP by this UV/TiO2/glass process was found to obey pseudo first-order kinetics represented by the Langmuir-Hinshelwood model. The experimental results of this study show that the influence of pH value of an aqueous solution to reaction rate was negligible at the pH values 4.5-9. The effect of cations on the photodegradation rate of DBP reveals that the larger the charge and size of cations contained, the more the inhibition of reaction rate increased. The UV/TiO2/glass process yielded a 75% degradation efficiency of DBP with initial concentration of 5 mg L(-1) at 80 min reaction time.  相似文献   

17.
采用微乳液介导水热法制备Bi2WO6和Fe/Bi2WO6光催化剂,并研究水热反应温度、前驱体pH值、水相与表面活性剂的摩尔比ω值和Fe3+掺杂量对光催化剂结构、形貌和光催化活性等方面的影响.结果表明:合成的Bi2WO6为15~25 nm的纳米球状结构;当前驱体pH=1、水热温度为150℃下合成的Bi2WO6催化剂对亚甲基蓝(MB)的降解率达到93.8%;当ω=27时合成的Bi2WO6对MB光催化降解率达到了97.8%.研究发现当掺入1.03%的Fe3+的Bi2WO6比纯Bi2WO6对MB的降解率提高了2倍,达到90.2%.  相似文献   

18.
Biodegradation of three nonionic surfactants, Tergitol 15-S-X (X=7, 9 and 12), and their effects on the biodegradation of phenanthrene by marine bacteria, Neptunomonas naphthovorans, were studied. The experimental outcomes could be fit well with the first-order biodegradation kinetics model. It was observed that the biodegradability of these surfactants decreased with an increase in the chain length of the hydrophilic moiety of the surfactant. When surfactant concentrations initially present were less than 250mgcarbon/L, biodegradability of Tergitol 15-S-X surfactants is around 0.3. Reduced biodegradability of Tergitol 15-S-7 and Tergitol 15-S-9 was observed when their concentrations initially present were increased to 322 and 371mgcarbon/L, respectively. In general, biodegradation of phenanthrene was enhanced with increasing solubilization of phenanthrene by these surfactants. However, with the same initial concentration of phenanthrene, biodegradability of phenanthrene was found to decrease with an increase in surfactant concentration. For these three surfactants, more than 80% of the phenanthrene was degraded when surfactant concentrations initially present were 200mg/L. However, less than 30% of phenanthrene could be degraded, if initial surfactant concentrations were increased to 1000mg/L. Interestingly, the concurrent biodegradation of the surfactants reduced their effective concentrations for micelle formation and, hence, contribute to the higher bioavailability of phenanthrene by gradually releasing phenanthrene molecules into the aqueous phase.  相似文献   

19.
Organo-clay was prepared by incorporating different amounts (in terms of CEC, ranging from 134?C840 mg of quaternary ammonium cation (QACs) such as hexadecytrimethylammonium bromide ([C19H42N]Br) into the montmorillonite clay. Prepared organo-clays are characterized by CHN analyser and XRD to measure the amount of elemental content and interlayer spacing of surfactant modified clay. The batch experiments of sorption of permanganate from aqueous media by organo-clays was studied at different acidic strengths (pH 1?C7). The experimental results show that the rate and amount of adsorption of permanganate was higher at lower pH compared to raw montmorillonite. Laboratory fixed bed experiments were conducted to evaluate the breakthrough time and nature of breakthrough curves. The shape of the breakthrough curves shows that the initial cationic surfactant loadings at 1??0 CEC of the clay is enough to enter the permanganate ions in to the interlamellar region of the surfactant modified smectile clays. These fixed bed studies were also applied to quantify the effect of bed-depth and breakthrough time during the uptake of permanganate. Calculation of thermodynamic parameters shows that the sorption of permanganate is spontaneous and follows the first order kinetics.  相似文献   

20.
Effects of pH on dechlorination of trichloroethylene by zero-valent iron   总被引:19,自引:0,他引:19  
The surface normalized reaction rate constants (k(sa)) of trichloroethylene (TCE) and zero-valent iron (ZVI) were quantified in batch reactors at pH values between 1.7 and 10. The k(sa) of TCE linearly decreased from 0.044 to 0.009l/hm(2) between pH 3.8 and 8.0, whereas the k(sa) at pH 1.7 was more than an order higher than that at pH 3.8. The degradation of TCE was not observed at pH values of 9 and 10. The k(sa) of iron corrosion linearly decreased from 0.092 to 0.018l/hm(2) between pH 4.9 and 9.8, whereas it is significantly higher at pH 1.7 and 3.8. The k(sa) of TCE was 30-300 times higher than those reported in literature. The difference can be attributed to the pH effects and precipitation of iron hydroxide. The k(sa) of TCE degradation and iron corrosion at a head space of 6 and 10ml were about twice of those at zero head space. The effect was attributed to the formation of hydrogen bubbles on ZVI, which hindered the transport the TCE between the solution and reaction sites on ZVI. The optimal TCE degradation rate was achieved at a pH of 4.9. This suggests that lowering solution pH might not expedite the degradation rate of TCE by ZVI as it also caused faster disappearance of ZVI, and hence decreased the ZVI surface concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号