首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The removal of the pollutant Supranol Yellow 4GL (S.Y.4GL) was studied by using different clays: clay exchanged with sodium (BNa+) and hydroxyaluminic polycation pillared clays in the presence or absence of non-ionic surfactant. While decomposing the surfactant at 500 degrees C, the surface of the clay changed significantly. The study of the behaviour of the three clays with respect to coloring solutions, allowed to determine the equilibrium time and the rate-determining step of the dye S.Y.4GL adsorption. Two simplified kinetic models, were tested to investigate the adsorption mechanisms in terms of pseudo-first order and pseudo-second order equations. Besides, the adsorption capacity data were fitted to Langmuir and Freundlich equations as well. A better fixation was obtained with an acidic pH. The effect of temperature on the adsorption of dye has been also studied and the thermodynamic parameters DeltaG degrees , DeltaH degrees and DeltaS degrees were determined.  相似文献   

2.
Cr(III)-intercalated montmorillonite was utilized as an adsorbent for the removal of the organic pollutant, Supranol Yellow 4GL, a synthetic dye used for chemical fibres. The material was prepared by the reaction of Na montmorillonite with a base-hydrolyzed solution of Cr nitrate salt (OH(-)/Cr(3+) molar ratios of 2). XRD data showed that the interlayer spacing (d(001)) of montmorillonite was increased from 12.35 to 23.06 Angstroms. The kinetics and mechanism of the adsorption of the acid dye, Supranol Yellow 4GL, on Cr(III)-intercalated montmorillonite was investigated. The equilibrium time was reached within 30 min. The process follows pseudo-second-order rate kinetics. The Langmuir isotherm described the adsorption data over the concentration range (20-160 mg/l). The separator factor R(L) revealed the favourable nature of this adsorption process. Also, the thermodynamic parameters such as DeltaS degrees, DeltaH degrees, DeltaG degrees were determined.  相似文献   

3.
In this study, Moroccan crude clay of Safi, which was characterized by X-ray diffraction, is used as adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the Basic Red 46 (BR46) in aqueous solutions at various dye concentrations, adsorbent masses and pH values. The results showed that the adsorption capacity of the dye increased by initial dye concentration and pH values. Two kinetic models (the pseudo-first-order and the pseudo-second-order) were used to calculate the adsorption rate constants. The adsorption kinetics of the basic dye followed pseudo-second-order model. The experimental data isotherms were analyzed using the Langmuir, Freundlich and Dubinin–Radushkevish equations. The monolayer adsorption capacity for BR46 dye is 54 mg/g of crude clay. Nearly 20 min of contact time was found to be sufficient for the dye adsorption to reach equilibrium. Thermodynamical parameters were also evaluated for the dye–adsorbent system and revealed that the adsorption process is exothermic in nature.  相似文献   

4.
The adsorption of Congo Red onto bentonite in a batch adsorber has been studied. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of Congo Red onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. Adsorption of Congo Red onto bentonite followed the Langmuir isotherm. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm.  相似文献   

5.
ABSTRACT

Systematic batch mode studies of adsorption of malachite green (MG) on montmorillonite clay were carried out as a function of process parameters which include pH, adsorbent dosage, agitation speed, ionic strength, initial MG concentration, and temperature. Montmorillonite was found to have excellent adsorption capacity. Equilibrium adsorption isotherms were measured for the single-component system, and the experimental data were analyzed by using Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm equations. It was found that the Langmuir equation appears to fit the equilibrium data. The monolayer (maximum) adsorption capacity (qm) was found to be 262.494 mg g?1 for montmorillonite. The experimental kinetic data were analyzed using the first-order, second-order, Elovich, and intraparticle kinetic models and the second-order kinetic model described the adsorption kinetics accurately for MG. Thermodynamic activation parameters such as ΔG*, ΔS*, and ΔH* of the adsorption of MG on montmorillonite were also calculated.  相似文献   

6.
This paper presents a study on the batch adsorption of basic dye, methylene blue, from aqueous solution (40 mg L(-1)) onto cedar sawdust and crushed brick in order to explore their potential use as low-cost adsorbents for wastewater dye removal. Adsorption isotherms were determined at 20 degrees C and the experimental data obtained were modelled with the Langmuir, Freundlich, Elovich and Temkin isotherm equations. Adsorption kinetic data determined at a temperature of 20 degrees C were modelled using the pseudo-first and pseudo-second-order kinetic equations, liquid-film mass transfer and intra-particle diffusion models. By considering the experimental results and adsorption models applied in this study, it can be concluded that equilibrium data were represented well by a Langmuir isotherm equation with maximum adsorption capacities of 142.36 and 96.61 mg g(-1) for cedar sawdust and crushed brick, respectively. The second-order model best describes adsorption kinetic data. Analysis of adsorption kinetic results indicated that both film- and particle-diffusion are effective adsorption mechanisms. The Influence of temperature and pH of the solution on adsorption process were also studied. The extent of the dye removal decreased with increasing the solution temperature and optimum pH value for dye adsorption was observed at pH 7 for both adsorbents. The results indicate that cedar sawdust and crushed brick can be attractive options for dye removal from dilute industrial effluents.  相似文献   

7.
The adsorption of phosphorus (P) on four sediment samples (CunTan, XiaoJiang, DaNing and XiangXi) from the Three-Gorges Reservoir on the Yangtze River in China was studied systematically in batch experiments. A sequential chemical extraction experiment was conducted to clarify the effect of sediment composition on P adsorption. The results showed that P adsorption on four sediment samples mainly occurred within 6 h. P adsorption kinetics can be satisfactorily fitted by both power function and simple Elovich model. A modified Langmuir model may describe well the P adsorption on all the samples in our study. Theoretically, the maximum adsorption amount (Qmax) was 0.402 mg-P/g for XiaoJiang sediment, 0.358 mg-P/g for DaNing sediment, 0.165 mg-P/g for CunTan sediment, and 0.15 mg-P/g for XiangXi sediment. The sediment compositions such as organic matter, metal hydroxides, calcium and clay content showed influences on the P adsorption. Wherein, organic matter and metal hydroxides were the main factors affecting the P adsorption. The maximum P adsorption capacity (Qmax) enhanced with the increase of the content of (Fe + Al + Ca). Compared the zero-equilibrium P concentration (EPC0) values obtained by the modified Langmuir models with actual P concentrations in water, all the sediments studied in this paper except for XiaoJiang showed a trend of releasing P as a source role, which could enhance the risk of eutrophication occurrence in the Three-Gorges Reservoir.  相似文献   

8.
Raw Kaolinite clay obtained Ubulu-Ukwu, Delta State of Nigeria and its sodium tetraborate (NTB)-modified analogue was used to adsorb Aniline blue dye. Fourier transformed infrared spectra of NTB-modified Kaolinite suggests that modification was effective on the surface of the Kaolinite clay with the strong presence of inner -OH functional group. The modification of Kaolinite clay raised its adsorption capacity from 1666 to 2000 mg/kg. Modeling adsorption data obtained from both unmodified and NTB-modified Kaolinite clay reveals that the adsorption of Aniline blue dye on unmodified Kaolinite clay is on heterogeneous adsorption sites because it followed strongly the Freundlich isotherm equation model while adsorption data from NTB-modified Kaolinite clay followed strongly the Langmuir isotherm equation model which suggest that Aniline blue dye was adsorb homogeneous adsorption sites on the NTB-modified adsorbent surface. There was an observed increase in the amount of Aniline blue adsorbed as initial dye concentration was increased from 10 to 30 mg/L. It was observed that kinetic data obtained generally gave better robust fit to the second-order kinetic model (SOM). The initial sorption rate was found to increased with increasing initial dye concentration (from 10 to 20 mg/L) for data obtained from 909 to 1111 mg kg(-1)min(-1) for unmodified and 3325-5000 mg kg(-1) min(-1) for NTB-modified adsorbents. Thereafter there was a decrease in initial sorption rate with further increase in dye concentration. The linearity of the plots of the pseudo-second-order model with very high-correlation coefficients indicates that chemisorption is involved in the adsorption process. From the design of a single-batch adsorber it is predicted that the NTB-modified Kaolinite clay adsorbent will require 50% less of the adsorbent to treat certain volumes of wastewater containing 30 mg/L of Aniline blue dye when it is compared with the unmodified adsorbent. This will be cost effective in the use of NTB-modified adsorbent for the adsorption of Aniline blue dye from water and wastewater.  相似文献   

9.
ABSTRACT

The removal of Basic Yellow 2 (BY2), a cationic dye, from aqueous solution by using montmorillonite as adsorbent was studied in batch experiments. The effect of pH, agitation speed, adsorbent dosage, initial dye concentration ionic strength, and temperature on the removal of BY2 was also investigated. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms were applied to fit the adsorption data of BY2 dye. Equilibrium data were well described by the typical Langmuir adsorption isotherm. The maximum monolayer adsorption capacity was calculated as 434.196 mg g?1 from the Langmuir isotherm model. The adsorption data was fitted to both the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle kinetic models, and the calculated values of the amount adsorbed at equilibrium (qe) by pseudo-second-order equations were found to be in good agreement with the experimental values. The thermodynamic factors were also evaluated. The entropy change (ΔS*) was negative, suggesting that the adsorption process decreases in entropy and enthalpy change (ΔH*) was positive which indicates endothermic nature. The positive ΔG* value confirms the un-spontaneity of the process. In addition, a semiempirical model was calculated from kinetic data.  相似文献   

10.
In this paper, nanospinels NiMnxFe2−xO4 (x = 0.05, 0.1, 0.3, 0.5, 0.7, and 1) were prepared by sol–gel method in the presence of nitrate–metal–ethylene glycol (EG) polymerized complex. The nanospinels were characterized using thermogravimetry analysis (TGA), X-ray powder diffraction (XRD), Fourier infrared spectroscopy (FTIR), and transmission electron microscope (TEM). The adsorption of an azo dye, reactive blue 5 (RB5), from water was determined using the prepared nanospinels. The effect of operational parameters such as the initial dye concentration, the concentration of nanospinels, temperature, and pH on the degradation of dye was investigated. The adsorption process follows second-order kinetics and Arrhenius behavior. Two common models, the Langmuir and Freundlich isotherms were used to investigate the interaction of dye and nanospinels. The isotherm evaluations revealed that the Freundlich model provides better fit to the experimental data than that of the Langmuir model. The photocatalytic degradation of RB5 at pH 1 under UV irradiation was examined. The results showed that the degradation of RB5 dye follows merely an adsorption process.  相似文献   

11.
Phenolics have recently been of great concern because of the extreme toxicity and persistency in the environment. Laboratory investigations of the potential use of Fe(III)/Cr(III) hydroxide as an adsorbent for the removal of bisphenol A and 2-aminophenol from aqueous solution were conducted. The operating variables studied are agitation time, initial concentration, adsorbent dose, pH and temperature. Equilibrium data follow Langmuir, Freundlich and Dubinin–Radushkevich isotherms. The Langmuir adsorption capacity of untreated and pretreated adsorbent was found to be 3.47 and 3.67 mg g−1, respectively, for bisphenol A; and 2.94 and 6.03 mg g−1 for 2-aminophenol. Adsorption was analyzed using first order, second order and Elovich kinetic models and the data were found to follow second order and Elovich kinetic models for the adsorption of bisphenol A by untreated adsorbent and first order and Elovich kinetic models for the adsorption of 2-aminophenol by untreated adsorbent. Thermodynamic parameters such as ΔG 0, ΔH 0 and ΔS 0 for the adsorption were evaluated.  相似文献   

12.
The sorption of SPANDS from aqueous solution onto the macroporous polystyrene anion exchangers of weakly basic Amberlyst A-21 and strongly basic Amberlyst A-29 in a batch method was studied. The effect of initial dye concentration and phase contact time was considered to evaluate the sorption capacity of anion exchangers. Equilibrium data were attempted by various adsorption isotherms including the Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models. A comparison of kinetic models applied to the adsorption rate constants and equilibrium sorption capacities was made for the Lagergren first-order, pseudo second-order and Morris–Weber intraparticle diffusion kinetic models. The results showed that the adsorption isotherm is in the good agreement with the Langmuir equation and that the adsorption kinetics of SPADNS on both anion exchangers can be best described by the pseudo second-order model.  相似文献   

13.
In this work, an attempt has been made to find the adsorption characteristics of crystal violet (CV) dye on calcined and uncalcined ball clay using batch adsorption technique. The ball clay adsorbents are characterized using thermo gravimetric analysis (TGA), particle size analysis, X-ray diffraction (XRD), nitrogen adsorption–desorption isotherm, and Fourier transform infrared (FT-IR) spectroscopy. The influence of pH and temperature on the adsorption of CV dye is examined. The experimental results of adsorption isotherms are fitted with Langmuir, Freundlich, and Redlich–Perterson models. Adsorption mechanisms of the CV dye on both the ball clays are investigated using thermodynamic parameters and analytical techniques. The results indicate that the Langmuir and Redlich–Peterson models are found to be the more appropriate model to explain the adsorption of CV dye on ball clays than that of Freundlich model. The maximum adsorption capacity of the calcined and uncalcined ball clay is found to be 1.6 × 10−4 and 1.9 × 10−4 mol g−1, respectively. The lower adsorption capacity of the calcined ball clay is due to the reduction in the surface hydroxyl group and surface area. Adsorption capacity and percentage removal of the CV dye on calcined and uncalcined ball clay increase with an increase in the temperature and pH, respectively. The obtained negative ΔG 0 values indicate that the adsorption of CV dye on ball clay is feasible and spontaneous in nature at temperatures studied. The energy supplied for calcining the ball clay did not bring any improvement in the adsorption capacity. Rather, a reduction in the adsorption capacity of the CV dye on calcined ball clay suggests that the uncalcined ball clay would be more economic and efficient adsorbent for the removal of CV dye than the calcined ball clay. In conclusion, uncalcined ball clay could be used as a low cost alternate for the expensive activated carbon.  相似文献   

14.
The adsorption of phosphate onto alunite in a batch adsorber has been studied. Four kinetic models including pseudo first- and second-order equation, intraparticle diffusion equation and the Elovich equation were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of phosphate onto alunite could be described by the pseudo second-order equation. Adsorption of phosphate onto alunite followed the Langmuir isotherm. A model has been used for the design of a two-stage batch adsorber based on pseudo second-order adsorption kinetics. The model has been optimized with respect to operating time in order to minimize total operating time to achieve a specified amount of phosphate removal using a fixed mass of adsorbent. The results of two-stage batch adsorber design studies showed that the required times for specified amounts of phosphate removal significantly decreased. It is particularly suitable for low-cost adsorbents/adsorption systems when minimising operating time is a major operational and design criterion, such as, for highly congested industrial sites in which significant volume of effluent need to be treated in the minimum amount of time.  相似文献   

15.
Removal of cadmium from aqueous solutions by adsorption onto orange waste   总被引:2,自引:0,他引:2  
The use of orange wastes, generated in the orange juice industry, for removing cadmium from aqueous solutions has been investigated. The material was characterized by Fourier transform infrared spectroscopy and batch experiments were conducted to determine the adsorption capacity of the biomass. A strong dependence of the adsorption capacity on pH was observed, the capacity increasing as pH value rose. Kinetics and adsorption equilibrium were studied at different pH values (4-6). The adsorption process was quick and the equilibrium was attained within 3h. The maximum adsorption capacity of orange waste was found to be 0.40, 0.41 and 0.43 mmol/g at pH 4-6, respectively. The kinetic data were analysed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using four isotherm models - Langmuir, Freundlich, Sips and Redlich-Peterson. The data were fitted by non-linear regression and five error analysis methods were used to evaluate the goodness of the fit. The Elovich equation provides the greatest accuracy for the kinetic data and the Sips model the closest fit for the equilibrium data.  相似文献   

16.
The biosorption of Cu(II) from aqueous solutions by valonia tannin resin was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmuir isotherm. The experimental data were analysed using four sorption kinetic models - the pseudo-first- and second-order equations, the Elovich and the intraparticle diffusion model equation - to determine the best fit equation for the biosorption of copper ions onto valonia tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well.  相似文献   

17.
This study investigates the adsorption of Congo red dye on walnut shell powder based activated carbon in batch process (WNAA). Walnut shell powder was carbonized by treating with phosphoric acid (H3PO4), and the adsorbent was characterized using Fourier Transform-Infrared spectrophotometer (FT-IR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), and pH point of zero charge (pHpzc), respectively. Operational parameters such as contact time, initial dye concentration, and pH were investigated using batch-adsorption techniques. The adsorption uptake was found to increase with increase in initial dye concentration and contact time. The optimum CR dye uptake was observed at pH 3.12 corresponding to 94.53% removal. Pseudo-first-order, pseudo-second-order, Elovich, and Intraparticle diffusion kinetic models were used to test the adsorption data. The pseudo-second order exhibited the best fit out of the four kinetic models used. Equilibrium data were fitted to the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models. Langmuir model fitted the adsorption data most with maximum monolayer coverage of 40?mg/g. Thermodynamic parameters such as Gibbs free energy, enthalpy, entropy, and the activation energy were determined. It was found that Congo red dye adsorption was spontaneous and endothermic. 0.02M Hydrochloric acid was used to regenerate the adsorbent prepared, and the regenerated adsorbent was used for dye adsorption. Congo red dye adsorption capacity ranged from 90% to 93% at three consecutive times. This study has shown that walnut shell is a good adsorbent in the treatment of Congo red dye from aqueous solutions.  相似文献   

18.
The use of a new activated carbon developed from date palm seed wastes, generated in the jam industry, for removing toxic chromium from aqueous solution has been investigated. The activated carbon has been achieved from date palm seed by dehydrating methods using concentrated sulfuric acid. The batch experiments were conducted to determine the adsorption capacity of the biomass. The effect of initial metal concentration (25-125mgl(-1)), pH, contact time, and concentration of date palm seed carbon have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increase as pH value decrease and the optimum pH value is pH 1.0. Kinetics and adsorption equilibrium were studied at different sorbent doses. The adsorption process was fast and the equilibrium was reached within 180min. The maximum removal was 100% for 75mgl(-1) of Cr(+ concentration on 4gl(-1) carbon concentration and the maximum adsorption capacity was 120.48mgg(-1). The kinetic data were analyzed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Koble-Corrigan, Redlich-Peterson, Tempkin, Dubinin-Radushkevich and Generalized isotherm equations. The Elovich equation and pseudo-second order equation provide the greatest accuracy for the kinetic data and Koble-Corrigan and Langmuir models the closest fit for the equilibrium data. Activation energy of sorption has also been evaluated as 0.115 and 0.229kJmol(-1).  相似文献   

19.
The aim of the present work was to investigate the feasibility of grass waste (GW) for methylene blue (MB) adsorption. The adsorption of MB on GW material was studied as a function of GW dose (0.05–1.20 g), solution pH 3–10, contact time and initial concentration (70–380 mg/L). The influence of these parameters on the adsorption capacity was studied using the batch process. The experimental data were analyzed by the Langmuir and Freundlich isotherms. The adsorption isotherm was found to follow the Langmuir model. The monolayer adsorption capacity was found to be 457.640 mg/g. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order models, and were found to follow closely the pseudo-second-order kinetic model. The results revealed that GW adsorbent is potentially low-cost adsorbent for adsorption of MB.  相似文献   

20.
Activated carbon prepared from cotton stalk fibre has been utilized as an adsorbent for the removal of 2-nitroaniline from aqueous solutions. The influence of adsorbent mass, contact time and temperature on the adsorption was investigated by conducting a series of batch adsorption experiments. The equilibrium data at different temperatures were fitted with the Langmuir, Freundlich, Tempkin, Redlich–Peterson and Langmuir–Freundlich models. The Langmuir–Freundlich isotherm was found to best describe the experimental data. The adsorption amount increased with increasing temperature. The maximum adsorption capacity of 2-nitroaniline was found to be 383 mg/g for initial 2-nitroaniline concentration of 200 mg/L at 45 °C. The kinetic rates were modeled by using the Lagergren-first-order, pseudo-second-order and Elovich models. The pseudo-second-order model was found to explain the adsorption kinetics most effectively. It was also found that the pore diffusion played an important role in the adsorption, and intraparticle diffusion was the rate-limiting step at the first 30 min for the temperatures of 25, 35 and 45 °C. FTIR and 13C NMR study revealed that the amino and isocyanate groups present on the surface of the adsorbent were involved in chemical interaction with 2-nitroaniline. The negative change in free energy (ΔG°) and positive change in enthalpy (ΔH°) indicated that the adsorption was a spontaneous and endothermic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号