首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rapid removal of organic dyes from water under low temperature environment offers significant advantages when water purification is required in cold regions. In this work, porous lanthanum hexaboride (LaB6) nanoparticles were fabricated via a facile low-temperature molten metal (LTMM) method in Zn media under argon atmosphere. As is evidenced by the characterization results, porous LaB6 can be prepared at 400?°C. Elevated reaction temperature led to the growth of nanoparticles, serious aggregation and the residue of Zn element in the final product. Notably, LaB6 nanoparticles prepared at 600?°C by such a LTMM method presented ultrafast adsorption, with a maximum MB sorption capacity of 606.2?mg·g?1, which was competitive with most of reported sorbents. Owing to the photothermal conversion property, LaB6 powder not only accelerated the melting of iced MB solution, but also achieved the efficient adsorption of MB in cold weather. LaB6 nanoparticles could be used as an attractive sorbent for dye removal from contaminated water, because of its facile synthesis process, excellent sorption performance and photothermal conversion property.  相似文献   

2.
This letter challenges the concept that Fe(0)/Me(0) bimetallic systems enhance contaminant reduction on Me(0) surfaces. It is shown on a pure thermodynamic perspective that any enhancement of contaminant reduction by Fe(0) in the presence of a second more electropositive elemental metal (Me(0)) is the result of an indirect process resulting from iron corrosion. This demonstration validates the concept that aqueous contaminant removal in the presence of Fe(0) mostly occurs within an in situ generated oxide film on Fe(0).  相似文献   

3.
In this study, we have demonstrated a facile one-step solvothermal method for the synthesis of the graphene nanosheet (GNS)/magnetite (Fe(3)O(4)) composite. During the solvothermal treatment, in situ conversion of FeCl(3) to Fe(3)O(4) and simultaneous reduction of graphene oxide (GO) into graphene in ethylene glycol solution were achieved. Electron microscopy study suggests the Fe(3)O(4) spheres with a size of about 200 nm are uniformly distributed and firmly anchored on the wrinkled graphene layers with a high density. The resulting GNS/Fe(3)O(4) composite shows extraordinary adsorption capacity and fast adsorption rates for removal of organic dye, methylene blue (MB), in water. The adsorption kinetics, isotherms and thermodynamics were investigated in detail to reveal that the kinetics and equilibrium adsorptions are well-described by pseudo-second-order kinetic and Langmuir isotherm model, respectively. The thermodynamic parameters reveal that the adsorption process is spontaneous and endothermic in nature. This study shows that the as-prepared GNS/Fe(3)O(4) composite could be utilized as an efficient, magnetically separable adsorbent for the environmental cleanup.  相似文献   

4.
In this study, the removal of perchlorate (0.016 mM ) using Fe0-only (325 mesh, 10 g L−1) and Fe0 (10 g L−1) with UV (254 nm) reactions were investigated under oxic and anoxic conditions (nitrogen purging). Under anoxic conditions, only 2% and 5.6% of perchlorate was removed in Fe0-only and Fe0/UV reactions, respectively, in a 12 h period. However, under oxic conditions, perchlorate was removed completely in the Fe0-only reaction, and reduced by 40% in the Fe0/UV reaction, within 9 h. The pseudo-first-order rate constant (k1) was 1.63 × 10−3 h−1 in Fe0-only and 4.94 × 10−3 h−1 in Fe0/UV reaction under anoxic conditions. Under oxic conditions, k1 was 776.9 × 10−3 h−1 in Fe0-only reaction and 35.1 × 10−3 h−1 in the Fe0/UV reaction, respectively. The chlorine in perchlorate was recovered as chloride ion in Fe0-only and Fe0/UV reactions, but lower recovery of chloride under oxic conditions might due to the adsorption/co-precipitation of chloride ion with the iron oxides. The removal of perchlorate in Fe0/UV reaction under oxic conditions increased in the presence of methanol (73%, 9 h), a radical scavenger, indicating that OH radical can inhibit the removal of perchlorate. The removal of perchlorate by Fe0-only reaction under oxic condition was highest at neutral pH. Application of the Langmuir-Hinshelwood model indicated that removal of perchlorate was accelerated by adsorption/co-precipitation reactions onto iron oxides and subsequent removal of perchlorate during further oxidation of Fe0. The results imply that oxic conditions are essential for more efficient removal of perchlorate in Fe0/H2O system.  相似文献   

5.
Adsorptive removal of methylene blue by tea waste   总被引:3,自引:0,他引:3  
The potentiality of tea waste for the adsorptive removal of methylene blue, a cationic dye, from aqueous solution was studied. Batch kinetics and isotherm studies were carried out under varying experimental conditions of contact time, initial methylene blue concentration, adsorbent dosage and pH. The nature of the possible adsorbent and methylene blue interactions was examined by the FTIR technique. The pH(pzc) of the adsorbent was estimated by titration method and a value of 4.3+/-0.2 was obtained. An adsorption-desorption study was carried out resulting the mechanism of adsorption was reversible and ion-exchange. Adsorption equilibrium of tea waste reached within 5h for methylene blue concentrations of 20-50mg/L. The sorption was analyzed using pseudo-first-order and pseudo-second order kinetic models and the sorption kinetics was found to follow a pseudo-second order kinetic model. The extent of the dye removal increased with increasing initial dye concentration. The equilibrium data in aqueous solutions were well represented by the Langmuir isotherm model. The adsorption capacity of methylene blue onto tea waste was found to be as high as 85.16mg/g, which is several folds higher than the adsorption capacity of a number of recently studied in the literature potential adsorbents. Tea waste appears as a very prospective adsorbent for the removal of methylene blue from aqueous solution.  相似文献   

6.
The removal of the methylene blue (MB), a cationic azo dye, in water is highly demanded due to its harmful effects on human health. In this study, the nitrogen-doped carbon nano-sheet was prepared as the adsorbent for MB using the efficient one-pot pyrolysis of melamine in the presence of NH4Cl and PVP. During the heat-treatment, the PVP interacted with melamine forming hydrogen-bond, which would not only elevate the melamine deamination process but also prohibit the melamine polymerization, which led to the formation of the layered structure. The addition of NH4Cl in the pyrolysis mixture would favor the formation of crumpled graphene-like-structure. The prepared materials showed a very high adsorption capacity of MB (348.2 mg/g), which is much higher than many other materials. Such a high adsorption capacity was likely due to its unique graphene-like structure, high N doping with a high content of pyridinic N and graphitic N, and large specific surface area. Moreover, the material was successfully recycled with only a slight decrease in the removal efficiency after 5 cycles.  相似文献   

7.
Meranti (Philippine mahogany) sawdust, an inexpensive material, showed strong scavenging behaviour through adsorption for the removal of methylene blue (MB) from aqueous solution. Batch studies were performed to evaluate and optimize the effects of various parameters such as contact time, pH, initial dye concentrations and adsorbent dosage. Langmuir, Freundlich and Temkin isotherms were used to analyze the equilibrium data at different temperatures. The experimental data fitted well with the Langmuir adsorption isotherm, indicating thereby the mono layer adsorption of the dye. The monolayer sorption capacity of meranti sawdust for MB was found to be 120.48, 117.64, 149.25 and 158.73 mg/g at 30, 40, 50 and 60 °C, respectively. Thermodynamic calculations showed that the MB adsorption process is endothermic and spontaneous in nature. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model. The results indicated that the meranti sawdust could be an alternative material in place of more costly adsorbents used for dye removal.  相似文献   

8.
The ability of an unconventional bio-adsorbent, pineapple leaf powder (PLP) for the adsorption of methylene blue (MB) from aqueous solution was studied. It was observed that intra-particle diffusion was involved in the adsorption process and that the kinetic data fitted well with a pseudo-second-order equation. Fitting parameters revealed that the rate of adsorption increased with decrease in dye concentration and decrease in ionic strength while the mixing speed did not have a significant effect on adsorption. The adsorption was favorable at higher pH and lower temperature, and the equilibrium data were well fitted by the Langmuir isotherm. The maximum adsorption capacity varied from 4.68 × 10−4 to 9.28 × 10−4 mol/g when pH increases from 3.5 to 9.5. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. The results revealed that this agricultural waste has potential to be used as an economical adsorbent for the removal of methylene blue from aqueous solution.  相似文献   

9.
Pelagite generally has large surface area and high adsorbing and oxidizing reactivity due to highly amorphous nature, and high reducing potential of Mn (hydro)oxide phases present in it. In the present study, pelagite, collected from the East Pacific Ocean, was tested as a potential oxidant for decolorization of methylene blue (MB) in a batch system under air-bubbling and motor-stirring conditions. The effects of suspension pH (3.0-10.0), MB concentration (10-100 mgL(-1)) and loading (0.2-3.0 gL(-1)), and particle size (100-200 mesh) of pelagite on kinetics of MB decolorization were assessed. Results show that in typical concentration range of dye wastewaters (10-50 mgL(-1)), pelagite can be used as a highly efficient material for oxidative degradation of MB. MB decolorization was through a surface mechanism, that is, formation of surface precursor complex between MB and surface bound Mn(III, IV) center, followed by electron transfer within the surface complex. Iron (hydro)oxide phases present in the pelagite did not play an important role in MB decolorization. Suspension pH exerted double-edged effects on MB decolorization by influencing the formation of surface precursor complex, and reducing potential of the system. Kinetic rate of MB decolorization is directly proportional to saturation degree of available reaction sites by MB adsorption. At the initial and later stages, the kinetics for MB decolorization with respect to MB concentration, pelagite loading, and particle size could be described separately using two pseudofirst rate equations, except at very high pelagite loading (3.0 mgL(-1)). Accumulation of Mn(2+) and probably some organic intermediates exerted marked inhibitory effect on MB decolorization. Vigorous dynamic condition was favorable for MB decolorization. The presence of oxygen could enhance MB decolorization to a limited extent.  相似文献   

10.
Despite two decades of intensive laboratory investigations, several aspects of contaminant removal from aqueous solutions by elemental iron materials (e.g., in Fe0/H2O systems) are not really understood. One of the main reasons for this is the lack of a unified procedure for conducting batch removal experiments. This study gives a qualitative and semi-quantitative characterization of the effect of the mixing intensity on the oxidative dissolution of iron from two Fe0-materials (materials A and B) in a diluted aqueous ethylenediaminetetraacetic solution (2 mM EDTA). Material A (fillings) was a scrap iron and material B (spherical) a commercial material. The Fe0/H2O/EDTA systems were shaken on a rotational shaker at shaking intensities between 0 and 250 min−1 and the time dependence evolution of the iron concentration was recorded. The systems were characterized by the initial iron dissolution rate (kEDTA). The results showed an increased rate of iron dissolution with increasing shaking intensity for both materials. The increased corrosion through shaking was also evidenced through the characterization of the effects of pre-shaking time on kEDTA from material A. Altogether, the results disprove the popular assumption that mixing batch experiments is a tool to limit or eliminate diffusion as dominant transport process of contaminant to the Fe0 surface.  相似文献   

11.
An iron terephthalate (MOF-235), one of the metal-organic frameworks (MOFs), has been used for the removal of harmful dyes (anionic dye methyl orange (MO) and cationic dye methylene blue (MB)) from contaminated water via adsorption. The adsorption capacities of MOF-235 are much higher than those of an activated carbon. The performance of MOF-235 having high adsorption capacity is remarkable because the MOF-235 does not adsorb nitrogen at liquid nitrogen temperature. Based on this study, MOFs, even if they do not adsorb gases, can be suggested as potential adsorbents to remove harmful materials in the liquid phase. Adsorption of MO and MB at various temperatures shows that the adsorption is a spontaneous and endothermic process and that the entropy increases (the driving force of the adsorption) with adsorption of MO and MB.  相似文献   

12.
The adsorption kinetics of a cationic dye, methylene blue (MB), onto the silica nano-sheets derived from vermiculite via acid leaching was investigated in aqueous solution in a batch system with respect to contact time, initial dye concentration, pH, and temperature. Experimental results have shown that increasing initial dye concentration favors the adsorption while the acidic pH and temperature go against the adsorption. Experimental data related to the adsorption of MB on the silica nano-sheets under different conditions were applied to the pseudo-first-order equation, the pseudo-second-order equation and the intraparticle diffusion equation, and the rate constants of first-order adsorption (k(1)), the rate constants of second-order adsorption (k(2)) and intraparticle diffusion rate constants (k(int)) were calculated, respectively. The experimental data fitted very well the pseudo-second-order kinetic model. The activation energy of system (E(a)) was calculated as 3.42 kJ/mol. The thermodynamics parameters of activation such as Gibbs free energy, enthalpy, entropy were also evaluated and found that DeltaG*, DeltaH*, and DeltaS* are 65.95 (71.63, 77.45)kJ/mol, 0.984 (0.776, 0.568)kJ/mol, and -0.222 (-0.223, -0.224)kJ/(Kmol) at 20 (45, 70) degrees C, respectively. The desorption of the dye on the silica nano-sheets using ethanol was also investigated primarily.  相似文献   

13.
《Advanced Powder Technology》2014,25(6):1721-1727
In this paper, delafossite-type Na0.5Li0.5CoO2 nanoparticles (NPs) with an average particle size of 50 nm were successfully synthesized by sol–gel method. Prepared NPs were characterized by differential thermal analysis, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and scanning tunneling microscopy. The nanoparticles showed the excellent adsorption properties towards methylene blue dye (MBD) as a reactive dye. The kinetics of removal of MBD in aqueous solutions was studied in a series of experiments which were varied in the amount of NPs, contact time, pH, and temperature. The experimental data were fitted very well in the pseudo-second order kinetic model and the Freundlich adsorption isotherm model. 92% of dye was successfully removed in 10 min using 0.02 g Na0.5Li0.5CoO2 NPs in a pH = 11. Thermodynamic study indicates that the adsorption of MBD is feasible, and spontaneous in nature.  相似文献   

14.
采用金属银修饰的碳纳米管制备了Ag-CNT/TiO2复合电极。利用X-射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),和能量分散性X射线分析(EDX)对所制的Ag-CNT/TiO2复合材料进行了表征。结果表明:二氧化钛颗粒和金属银颗粒在碳纳米管上均匀分布,所制电极具有较高的光电催化性能。其对亚甲基蓝的光电催化降解归因于一种协同效应,即二氧化钛的光降解、碳纳米管网络的电子辅助、金属银的增强和外加电势的作用。尤其是,经银修饰的复合电极增强了其对亚甲基蓝的光电降解,且随银含量的增加其光电催化效果增加。  相似文献   

15.
Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.  相似文献   

16.
《Advanced Powder Technology》2021,32(10):3904-3914
NaP1 zeolite, using red mud (RM) as raw material, was successfully prepared via alkali fusion and hydrothermal method. NaP1 zeolite, which was a mesoporous material, had specific surface area and pore diameter of 79.3 m2·g−1 and 7.26 nm, respectively. NaP1 zeolite had excellent adsorption properties. Under the optimum adsorption conditions, methylene blue (MB) was adsorbed through NaP1 zeolite, the adsorption capacity was 48.7 mg·g−1 and the removal efficiency was 97.1%. The adsorbent was regenerated with sodium chloride as eluent. The adsorption capacity of the adsorbent regenerated three times still was satisfactory 34.53 mg·g−1, which showed the excellent stability performance from NaP1 zeolite. The adsorption conformed to the pseudo second order kinetic and Freundlich isotherm model. Moreover, MB molecules were adsorbed by diffusion on the outer surface, diffusion on the inner surface, and adsorption on the inner surface of NaP1 zeolite. And, during the external diffusion, electrostatic attraction and hydrogen bonding created. Al and Si were extracted from RM to prepare NaP1 zeolite with excellent adsorption properties. This result provides an important example for the development of the potential value of RM.  相似文献   

17.
The adsorption kinetics of methylene blue (MB) on the hazelnut shell with respect to the initial dye concentration, pH, ionic strength, particle size and temperature were investigated. The rate and the transport/kinetic processes of MB adsorption were described by applying the first-order Lagergren, the pseudo-second-order, mass transfer coefficient and the intraparticle diffusion models. Kinetic studies showed that the kinetic data were well described by the pseudo-second-order kinetic model. Significant increases in initial adsorption rate were observed with the increase in temperature followed by pH and initial MB concentration. The intraparticle diffusion was found to be the rate-limiting step in the adsorption process. Adsorption activation energy was calculated to be 45.6kJmol(-1). The values of activation parameters such as free energy (DeltaG(*)), enthalpy (DeltaH(*)) and entropy (DeltaS(*)) were also determined as 83.4kJmol(-1), 42.9kJmol(-1) and -133.5Jmol(-1)K(-1), respectively.  相似文献   

18.
采用多壁碳纳米管(MWCNTs)为载体,分别以醋酸镉((CH3COO)2Cd.2H2O)和硫化钠(Na2S.5H2O)为镉源和硫源,经简单逐滴滴入途径制备了CdS/CNT复合材料。再以四丁氧基钛(TNB)为钛源,苯为溶剂,成功地将二氧化钛(TiO2)纳米粒子沉积在CdS修饰的MWCNTs表面而得到CdS/CNT-TiO2光催化剂。利用N2吸附等温线、扫描电子显微镜、X射线衍射、能量分散性X射线分析以及透射电子显微镜对所制CdS/CNT-TiO2光催化剂进行表征。CdS/CNT-TiO2复合材料呈多孔结构,MWCNTs均匀分散在材料中,且未出现明显的TiO2和CdS纳米颗粒团聚体。该材料在紫外和可见光照射下对亚甲基蓝具有优异的降解活性。这不仅归因于TiO2对自由基的反应和MWCNTs吸附能力,且归因于引入窄带隙半导体CdS,使粒子在MWCNTs表面的电子转移速率得到提高。  相似文献   

19.
Magnetic NiFe2O4/SBA-15 nanocomposites were synthesized by a facile impregnation method, and NiFe2O4 nanoparticles presented spinel phase structure and existed in the mesopores of SBA-15. Partial mesopores were blocked by NiFe2O4 nanoparticles and micropores formed, which the capillarity of micropores played a decisive role for methylene blue (MB) adsorption. The saturation magnetization increased from 2.34 emu g?1 to 10.03 emu g?1 with the NiFe2O4 content, while the specific surface area decreased from 552.18 m2 g?1 to 260.40 m2 g?1 and pore volume decreased from 1.13 cm3 g?1 to 0.49 cm3 g?1. MB adsorption could be improved by optimizing the NiFe2O4 content of the nanocomposites. MB could be adsorbed completely in 60 min with the optimum nanocomposites and could be separated easily from water by magnetic separation technique.  相似文献   

20.
Batch and column kinetics of methylene blue adsorption on calcium chloride, zinc chloride, magnesium chloride and sodium chloride treated beech sawdust were simulated, using untreated beech sawdust as control, in order to explore its potential use as a low-cost adsorbent for wastewater dye removal. The adsorption capacity, estimated according to Freundlich's model, the Langmuir constant K(L) and the adsorption capacity coefficient values, determined using the Bohart and Adams' bed depth service model indicate that salts treatment enhanced the adsorption properties of the original material. Since sawdust is an industrial waste/byproduct and the salts used can be recovered as spent liquids from various chemical operations, this process of adsorbent upgrading/modification might be considered to take place within an 'Industrial Ecology' framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号