首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research, the adsorption equilibria of trichloroethylene (TCE) and benzene vapors onto hypercrosslinked polymeric resin (NDA201) were investigated by the column adsorption method in the temperature range from 303 to 333 K and pressures up to 8 kPa for TCE, 12 kPa for benzene. The Toth and Dubinin–Astakov (D–A) equations were tested to correlate experimental isotherms, and the experimental data were found to fit well by them. The good fits and characteristic curves of D–A equation provided evidence that a pore-filling phenomenon was involved during the adsorption of TCE and benzene onto NDA-201. Moreover, thermodynamic properties such as the Henry's constant and the isosteric enthalpy of adsorption were calculated. The isosteric enthalpy curves varied with the surface loading for each adsorbate, indicating that the hypercrosslinked polymeric resin has an energetically heterogeneous surface. In addition, a simple mathematic model developed by Yoon and Nelson was applied to investigate the breakthrough behavior on a hypercrosslinked polymeric resin column at 303 K and the calculated breakthrough curves were in high agreement with corresponding experimental data.  相似文献   

2.
The aim of the present work was to investigate the feasibility of grass waste (GW) for methylene blue (MB) adsorption. The adsorption of MB on GW material was studied as a function of GW dose (0.05–1.20 g), solution pH 3–10, contact time and initial concentration (70–380 mg/L). The influence of these parameters on the adsorption capacity was studied using the batch process. The experimental data were analyzed by the Langmuir and Freundlich isotherms. The adsorption isotherm was found to follow the Langmuir model. The monolayer adsorption capacity was found to be 457.640 mg/g. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order models, and were found to follow closely the pseudo-second-order kinetic model. The results revealed that GW adsorbent is potentially low-cost adsorbent for adsorption of MB.  相似文献   

3.
The adsorption of Pb(II) by pumice samples collected from the Mount Ararat region, located in eastern Turkey, was investigated in a batch system. The combined and individual effects of operating parameters on adsorption were analyzed using a multi-step response surface methodology. In the first step the most effective factors, which are initial Pb(II) concentration, pH, and temperature, were determined via fractional factorial design. Then the steepest ascent/descent followed by central composite design were used to interpret the optimum adsorption conditions for the highest Pb(II) removal. The optimum adsorption conditions were determined to be initial Pb(II) concentration of 84.30 mg/L, pH of 5.75, and temperature of 41.11 °C. At optimum conditions, the adsorption capacity of pumice for Pb(II) was found to be 7.46 mg/g according to a removal yield of 88.49 %. The obtained data agreed with a second-order rate expression and fit the Langmuir isotherm very well. The thermodynamic parameters such as ΔH°, ΔS°, and ΔG° for the Pb(II) adsorption were calculated at four different temperatures. The present results indicate that pumice is a suitable adsorbent material for adsorption of Pb(II) from aqueous solutions.  相似文献   

4.
The surface-initiated atom transfer radical polymerization (ATRP) was used to successfully prepare the aminated cotton and polyacrylic acid sodium (P(AA-Na))-grafted cotton for the efficient removal of Cu(II) and Pb(II) from aqueous solution in this study. The modified cotton surfaces were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The grafted long polymers with high density of amine and carboxyl groups on the cotton surfaces were responsible for the enhanced adsorption of heavy metals. The sorption behaviors including sorption kinetics, isotherms and pH effect were investigated. The sorption equilibrium of Cu(II) and Pb(II) was achieved within 1 h on the P(AA-Na)-grafted cotton, much faster than 8 h on the aminated cotton. According to the Langmuir fitting, the maximum sorption capacities of Cu(II) and Pb(II) on the P(AA-Na)-grafted cotton were 2.45 and 2.44 mmol/g, respectively, higher than many adsorbents reported in the literature. The P(AA-Na)-grafted cotton had better adsorption behaviors for Cu(II) and Pb(II) than the aminated cotton.  相似文献   

5.
The phase transformation and crystallization kinetics of (1 − x)Li2O–xNa2O–Al2O3–4SiO2 glasses have been studied by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED) analysis. The crystallization temperature at the exothermic peak increases from 1171 to 1212 K when the Na2O content increases from 0 to 0.6 mol. The crystalline phase is composed of spodumene crystallization when the Na2O content increases from 0 to 0.6 mol. The activation energy of spodumene crystallization decreases from 444.0 ± 22.2 to 284.0 ± 10.8 kJ mol−1 when the Na2O content increases from 0 to 0.4 mol. Moreover, the activation energy increases from 284.0 ± 10.8 to 446.0 ± 23.2 kJ mol−1 when the Na2O content increases from 0.4 to 0.6 mol. The crystallization parameters m and n approach 2, indicating that the surface nucleation and two-dimensional growth are dominant in (1 − x)Li2O–xNa2O–Al2O3–4SiO2 glasses.  相似文献   

6.
Activated carbon prepared from cotton stalk fibre has been utilized as an adsorbent for the removal of 2-nitroaniline from aqueous solutions. The influence of adsorbent mass, contact time and temperature on the adsorption was investigated by conducting a series of batch adsorption experiments. The equilibrium data at different temperatures were fitted with the Langmuir, Freundlich, Tempkin, Redlich–Peterson and Langmuir–Freundlich models. The Langmuir–Freundlich isotherm was found to best describe the experimental data. The adsorption amount increased with increasing temperature. The maximum adsorption capacity of 2-nitroaniline was found to be 383 mg/g for initial 2-nitroaniline concentration of 200 mg/L at 45 °C. The kinetic rates were modeled by using the Lagergren-first-order, pseudo-second-order and Elovich models. The pseudo-second-order model was found to explain the adsorption kinetics most effectively. It was also found that the pore diffusion played an important role in the adsorption, and intraparticle diffusion was the rate-limiting step at the first 30 min for the temperatures of 25, 35 and 45 °C. FTIR and 13C NMR study revealed that the amino and isocyanate groups present on the surface of the adsorbent were involved in chemical interaction with 2-nitroaniline. The negative change in free energy (ΔG°) and positive change in enthalpy (ΔH°) indicated that the adsorption was a spontaneous and endothermic process.  相似文献   

7.
A new method that utilizes zincon-modified activated carbon (AC-ZCN) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III) and Pb(II) onto the AC-ZCN were 17.9 and 26.7 mg g−1, respectively. The adsorbed metal ions were quantitatively eluted by 1 mL of 0.1 mol L−1 HCl. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3σ) of this method for Cr(III) and Pb(II) were 0.91 and 0.65 ng mL−1, respectively. The relative standard deviation under optimum condition is less than 3.5% (n = 8). The method has been applied for the determination of Cr(III) and Pb(II) in biological materials and water samples with satisfactory results.  相似文献   

8.
Inhibition of the corrosion of mild steel in 1.0 M HCl solution by a Schiff base compound named 2-[(4-phenoxy-phenylimino)methyl]-phenol (APS) was investigated at different temperatures (25–55 °C) using electrochemical measurements. The inhibition efficiency increased as APS concentration and temperature increased. It was found that adsorption for APS on mild steel complies with the Langmuir adsorption isotherm in all studied temperature. Thermodynamic parameters (ΔGads, ΔHads and ΔSads) for APS adsorption on mild steel were found out and discussed at each temperature. Time dependency of mild steel in 1.0 M HCl solution in the absence and presence of APS was also studied. The surface morphology of mild steel was examined via SEM analysis.  相似文献   

9.
In the present study, a deeper understanding of adsorption behavior of Pb(II) from aqueous systems onto activated carbon and treated activated carbon has been attempted via static and column mode studies under various conditions. It probes mainly two adsorbents that is, activated carbon (AC) and modified activated carbon (AC-S). Characterization of both the adsorbents was one of the key focal areas of the present study. This has shown a clear change or demarcation in the various physical and chemical properties of the modified adsorbent from its precursor activated carbon. Both the adsorbents are subjected to static mode adsorption studies and then after a comparison based on isotherm analysis; more efficient adsorbent is screened for column mode adsorption studies. The lead removal increased for sample of treated carbon. The extent of Pb(II) removal was found to be higher in the treated activated carbon. The aim of carrying out the continuous-flow studies was to assess the effect of various process variables, viz., of bed height, hydraulic loading rate and initial feed concentration on breakthrough time and adsorption capacity. This has helped in ascertaining the practical applicability of the adsorbent. Breakthrough curves were plotted for the adsorption of lead on the adsorbent using continuous-flow column operation by varying different operating parameters like hydraulic loading rate (3.0-10.5 m3/(hm2)), bed height (0.3-0.5 m) and feed concentrations (2.0-6.0 mg/l). At the end, an attempt has also been made to model the data generated from column studies using the empirical relationship based on Bohart-Adams model. This model has provided an objective framework to the subjective interpretation of the adsorption system and the model constant obtained here can be used to achieve the ultimate objective of our study that is, up scaling and designing of adsorption process at the pilot plant scale level. AC-S column regeneration using 0.5 and 1.0M concentration of HNO3 has been investigated. It has shown a regeneration efficiency of 52.0% with 0.5 M HNO3.  相似文献   

10.
Silica-based adsorbent was prepared by radiation-induced grafting of dimethylaminoethyl methacrylate (DMAEMA) onto the silanized silica followed by a protonation process. The FTIR spectra and XPS analysis proved that DMAEMA was grafted successfully onto the silica surface. The resultant adsorbent manifested a high ion exchange capacity (IEC) of ca. 1.30 mmol/g and the Cr(VI) adsorption behavior of the adsorbent was further investigated, revealing the recovery of Cr(VI) increased with the adsorbent feed and the equilibrium adsorption could be achieved within 40 min. The adsorption capacity, strongly depended on the pH of the solution, reached a maximum Cr(VI) uptake (ca. 68 mg/g) as the pH was in the range of 2.5–5.0. Furthermore, even in strong acidic (4.0 mol/L HNO3) or alkaline media (pH 11.0), the adsorbent had a sound Cr(VI) uptake capacity (ca. 22 and 30 mg/g, respectively), and the adsorption followed Langmuir mode. The results indicated that this adsorbent, prepared via a convenient approach, is applicable for removing heavy-metal-ion pollutants (e.g. Cr(VI)) from waste waters.  相似文献   

11.
Dolochar, a waste material generated in sponge iron industry, is processed and put to test as an adsorbent for removal of Cd(II) and Cr(VI) ions from aqueous solutions. The dolochar samples were characterised to determine the different phases and their distribution by reflection microscopy. The analysis indicated that the sample consists of metallic iron, fused carbon, and Ca-Mg bearing phases (Ca-Mg-silicate-oxide) along with lots of voids and pores. The fixed carbon (FC) content of the material is 13.8% with a Langmuir surface area of 81.6 m2/g and micropore area of 34.1 m2/g. Batch adsorption experiments have been conducted to study the sorption behaviour of Cd(II) and Cr(VI) ions on dolochar as a function of particle size, contact time, adsorbent dosages, pH and temperature. It is observed that higher pH and temperature enhances sorption of Cd(II) ions. In contrast, the adsorption for Cr(VI) is found to be better in acidic pH in comparison to alkaline media. The equilibrium adsorption isotherm data are tested by applying both Langmuir and Freundlich isotherm models. It is observed that Langmuir isotherm model fitted better compared to the Freundlich model indicating monolayer adsorption. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° indicate the effectiveness of dolochar to remove Cd(II) and Cr(VI) ions from aqueous solution. The kinetics of adsorption is found to better fit to pseudo second order reaction.  相似文献   

12.
In the present communication we report on the optimization of persulfate/ascorbic acid initiated synthesis of chitosan-graft-poly(acrylamide) (Ch-g-PAM) and its application in the removal of azo dyes. The optimum yield of the copolymer was obtained using 16 × 10−2 M acrylamide, 3.0 × 10−2 M ascorbic acid, 2.4 × 10−3 M K2S2O8 and 0.1 g chitosan in 25 mL of 5% aqueous formic acid at 45 ± 0.2 °C. Ch-g-PAM remained water insoluble even under highly acidic conditions and could efficiently remove Remazol violet and Procion yellow dyes from the aqueous solutions over a pH range of 3–8 in contrast to chitosan (Ch) which showed pH dependent adsorption. The adsorption data of the Ch-g-PAM and Ch for both the dyes were modeled by Langmuir and Freundlich isotherms where the data fitted better to Langmuir isotherms. To understand the adsorption behavior of Ch-g-PAM, adsorption of Remazol violet on to the copolymer was optimized and the kinetic and thermodynamic studies were carried out taking Ch as reference. Both Ch-g-PAM and Ch followed pseudo-second-order adsorption kinetics. The thermodynamic study revealed a positive heat of adsorption (ΔH°), a positive ΔS° and a negative ΔG°, indicating spontaneous and endothermic nature of the adsorption of RV dye on to the Ch-g-PAM. The Ch-g-PAM was found to be very efficient in removing color from real industrial wastewater as well, though the interfering ions present in the wastewater slightly hindered its adsorption capacity. The data from regeneration efficiencies for ten cycles evidenced the high reusability of the copolymer in the treatment of waste water laden with even high concentrations of dye.  相似文献   

13.
The problems of valorisation of particleboard wastes on one hand, and contamination of aqueous effluents by phenolic compounds on the other hand, are simultaneously considered in this work. Preparation of activated carbons from a two steps thermo-chemical process, formerly designed for generating combustible gases, is suggested. The resultant carbonaceous residue is activated with steam at 800 °C. Depending on the preparation conditions, surface areas within the range 800–1300 m2/g are obtained, close to that of a commercial activated carbon (CAC) specially designed for water treatment and used as a reference material. The present work shows that particleboard waste-derived activated carbons (WAC) are efficient adsorbents for the removal of phenol from aqueous solutions, with maximum measured capacities close to 500 mg/g. However, most of times, the adsorption capacities are slightly lower than that of the commercial material in the same conditions, i.e., at equilibrium phenol concentrations below 300 ppm. Given the extremely low cost of activated carbons prepared from particleboard waste, it should not be a problem to use it in somewhat higher amounts than what is required with a more expensive commercial material. Phenol adsorption isotherms at 298 K were correctly fitted by various equations modelling type I and type II isotherms for CAC and WAC, respectively. Phenol adsorption isotherms of type II were justified by a 3-stages adsorption mechanism.  相似文献   

14.
Magnetic nanoparticles are desirable adsorbents because of their unique superparamagnetic nature with the enhanced binding specificity and surface material interaction. The above unique features attract researchers to use it for wider applications. Herein, the study focuses on the amino‐induced silica‐layered magnetic nanoparticles amalgamated with plant‐extracted products of Cynodon dactylon in order to turn them into a potent adsorbing material in a continuous column set up for the elimination of noxiously distributed Cr(VI) ionsin the effluents. The selected plant‐mediated magnetite nanoadsorbent, which was used in the fixed column studies, is optimised with the attributes of inlet concentration, adsorbent bed depth, and flow rate. Thomas, Yoon‐Nelson and bed depth model showed the best experimental fit. Breakthrough adsorption time was reported for the various inlet concentrations of 100, 200 and 300 mg/L, adsorbent bed depths 2, 3 and 4 cm and volumetric flow rates of 4, 5 and 6 mL/min. The breakthrough point evaluated for the optimised attribute of inlet concentration of 100 mg/L, packed adsorbent depth 4 cm and flow rate 4 mL/min was 1400 min and the maximum removal efficiency was 60.6%. A better insight of the adsorption of metal ions for large‐scale industrial effluents is provided.  相似文献   

15.
The adsorption ability of duckweed (Lemna minor) powders for removing inorganic and organic mercury (methyl and ethyl mercury) has been studied using cold vapour atomic absorption spectrometry. The optimal adsorption conditions were: (a) the pH value of the solution 7.0 for inorganic and ethyl mercury, 9.0 for methyl mercury, and (b) equilibrium adsorption time 10, 20, and 40 min for inorganic mercury, methyl mercury, and ethyl mercury, respectively. After adsorption by L. minor powder for 40 min, when the initial concentrations of inorganic and organic mercury were under 12.0 μg L−1 and 50.0 μg L−1, respectively, the residual concentrations of mercury could meet the criterion of drinking water (1.0 μg L−1) and the permitted discharge limit of wastewater (10.0 μg L−1) set by China and USEPA, respectively. Thorough removal of both inorganic and organic mercury from aqueous solutions was reported for the first time. The significant adsorption sites were C–O–P and phosphate groups by the surface electrostatic interactions with aqueous inorganic and organic mercury cations, and then the selective adsorption was resulted from the strong chelating interaction between amine groups and mercury on the surface of L. minor cells.  相似文献   

16.
Three gamma crosslinked polymeric hydrogels were synthesized and evaluated as lead ion sorbents. A crosslinked poly(acrylic acid) hydrogel was compared with two 4-vinylpiridine-grafted poly(acrylic acid) hydrogels (26.74 and 48.1% 4-vinylpiridine). The retention properties for Pb(II) from aqueous solutions of these three polymers were investigated by batch equilibrium procedure. The effects of pH, contact time and Pb(II) concentration were evaluated. The optimal pH range for all polymers was 4-6. The lightly grafted polymer (PAAc-g-4VP at 26.74%) exhibited a Pb(II) removal close to 80% at 5 h and above 90% at 24 h. The maximum Pb(II) removal was 117.9 mg g−1 of polymer and followed the Freundlich adsorption model. XPS characterization indicates that the carboxyl groups are involved in the Pb(II) removal.  相似文献   

17.
In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50–100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3 h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal.  相似文献   

18.
In this paper changes of structure and magnetotransport properties of Co/Cu multilayers were observed as a function of the Pb buffer layer thickness. Structural analysis indicated that the Pb buffer leads to the decay of superlattice periodicity. Surface topography of the top layer of the Co/Cu multilayers observed by SFM allowed the determination of surface roughness which is relatively large and weakly depends on buffer thickness. This effect is accompanied by the continuous rise of island size that reaches a diameter around 200 nm for Co/Cu multilayers deposited on 40 nm Pb buffer. AES experiments show significant segregation of Pb to the surface. A small magnetoresistance effect ΔR/R measured for Co/Cu multilayers deposited on an Pb buffer is almost independent of the thickness of the buffer layer. This behavior of ΔR/R could be understood by assuming that discontinuous ferromagnetic layers, bridged through the Cu spacer, are formed.  相似文献   

19.
The materials with adsorbent properties were produced from urban sewage sludge by two different procedures via microwave irradiation: (1) by one single pyrolysis stage (SC); (2) by chemical activation with ZnCl2 (SZ). The BET, SEM and FT-IR have been used to evaluate the pore structural parameters and surface chemistry of the adsorbents, respectively. Subsequently they were used for adsorption of Cu(II) from aqueous solutions. The effects of various experimental parameters, such as pH, temperature were investigated in a batch-adsorption technique. The results showed that the adsorption of Cu(II) was maximal at pH 5.0. The kinetic study demonstrated that the adsorption process was followed the second-order kinetic equation. The experimental adsorption isotherm data were well fitted with Langmuir model and the maximum adsorption capacity of Cu(II) were found to be 3.88 and 10.56 mg/g for SC and SZ, respectively, in the solution of pH 5.0. Thermodynamic parameters such as changes in the enthalpy (ΔH0), entropy (ΔS0) and free energy (ΔG0) indicate that Cu(II) adsorption onto SC and SZ is an endothermic and spontaneous process in nature at 15-45 °C. These results indicate that the sewage sludge-derived material via microwave induced ZnCl2 activation is an effective and alternative adsorbent for the removal of Cu(II) from aqueous solution.  相似文献   

20.
Copolymer hydrogels composed of poly(vinyl alcohol) (PVA) and carboxymethyl cellulose (CMC) was prepared by using electron beam irradiation as crosslinking agent. The copolymers were characterized by FTIR and the physical properties such as gelation. The thermal behavior and swelling properties of the prepared hydrogels were investigated as a function of PVA/CMC composition. The factors effecting adsorption capacity of acid, reactive and direct dyes onto PVA/CMC hydrogel, such as CMC content, pH value of the dye solution, initial concentration and adsorption temperature for dyes were investigated. Thermodynamic study indicated that the values the negative values of ΔH suggested that the adsorption process is exothermic. The value of ΔH (38.81 kJ/mol) suggested that the electrostatic interaction is the dominant mechanism for the adsorption of dyes on hydrogel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号