首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two kinds of cyano-containing imidazolium-based ionic liquid, 1-cyanopropyl-3-methylimidazolium-bis(trifluoromethanesulfonyl)imide (CpMI-TFSI) and 1-cyanomethyl-3-methylimidazolium-bis(trifluoromethanesulfonyl)imide (CmMI-TFSI), each of which contained 20 wt% dissolved LiTFSI, were used as electrolytes for lithium secondary batteries. Compared with 1-ethyl-3-methylimidazolium-bis(trifluoromethane-sulfonyl)imide (EMI-TFSI) electrolyte, a reversible lithium deposition/dissolution on a stainless-steel working electrode was observed during CV measurements in these cyano-containing electrolytes, which indicated that a passivation layer (solid electrolyte interphase, SEI) was formed during potential scanning. The morphology of the working electrode with each electrolyte system was studied by SEM. Different dentrite forms were found on the electrodes with each electrolyte. The SEI that formed in CpMI-TFSI electrolyte showed the best passivating effect, while the deposited film formed in EMI-TFSI electrolyte showed no passivating effect. The chemical characteristics of the deposited films on the working electrodes were compared by XPS measurements. A component with a cyano group was found in SEIs in CpMI-TFSI and CmMI-TFSI electrolytes. The introduction of a cyano functional group suppressed the decomposition of electrolyte and improved the cathodic stability of the imidazolium-based ionic liquid. The reduction reaction route of imidazolium-based ionic liquid was considered to be different depending on whether or not the molecular structure contained a cyano functional group.  相似文献   

2.
Alkoxylated-chalcone having push-pull system has been integrated as additive in solid biopolymer electrolyte (SBE) based on carboxymethyl cellulose (CMC) doped with ammonium chloride (NH4Cl). The structural, optical and thermal stability of the additive were characterized via FT-IR spectroscopy, UV–Vis, 1D NMR and TGA prior film casting as SBE. The optical band gaps (Egopt) of alkoxylated-chalcone additive exhibited low range, 3.14 eV which are comparable to that corresponding simulated findings, whereas they lie within the range of organic semiconductor materials. Frontier molecular orbitals (FMO) analysis, chemical reactivity and molecular electrostatic potential (MEP) revealed that the oxygen on alkoxy chain and –NO2 substituent tuning the energy level of HOMO and LUMO. The investigation of their potential as additive in SBE system has been accomplished by incorporating CMC-NH4Cl electrolyte using solution-casting method. A various weight ratio (0–8%) of additive was tested and doped with CMC-NH4Cl as new SBE. The highest ionic conductivity achieved was 2.3 × 10?2 Scm?1 at ambient temperature (303K) for the system containing 8 wt.% of chalcone-based additive. The findings imply that the designated chalcone-based moiety has a potential to be employed as additive materials towards the performance enhancement for electrochemical the interests.  相似文献   

3.
Solid electrolyte interface (SEI) formation is a key that utilizes to protect the structure of graphite anode and enhances the redox stability of lithium-ion batteries before entering the market. The effect of SEI formation applies a differential pulse (DP) and constant current (CC) charging on charge-discharge performance and cycling behavior into brand new commercial lithium ion batteries is investigated. The morphologies and electrochemical properties on the anode surface are also inspected by employing SEM and EDS. The electrochemical impedance spectra of the anode electrode in both charging protocols shows that the interfacial resistance on graphite anodes whose SEI layer formed by DP charging is smaller than that of CC charging. Moreover, the cycle life result shows that the DP charging SEI formation is more helpful in increasing the long-term stability and maintaining the capacity of batteries even under high power rate charge-discharge cycling. The DP charging method can provide a SEI layer with ameliorated properties to improve the performance of lithium ion batteries.  相似文献   

4.
Lithium phosphorus oxynitride (LiPON) solid state amorphous film electrolytes were synthesized by ion beam assisted deposition (IBAD) using Li3PO4 target under nitrogen reactive plasma. IBAD presents an advantage of controllable nitrogen content of the films by adjusting N2 and Ar flow ratio. X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), nanoindenter, and profiler were employed to characterize LiPON films. Our results indicate that the film at N2 and Ar flow ratio of 1:8 showed the best surface morphology and mechanical properties. The highest N atomic percentage of 2.32% was also obtained at this synthesis circumstance, and the resultant LiPON film electrolyte showed higher ionic conductivity of 4.5 × 10−6 S/cm at room temperature, as well as the highest hardness of 6.8 GPa and the lowest compressive stress of 147.2 MPa. It is believed that as-prepared LiPON solid state electrolyte film optimized can effectively prevent delamination from electrodes, showing some promising application in thin film lithium ion batteries.  相似文献   

5.
The longevity of a solid oxide fuel cell (SOFC) stack is curtailed by the fragility of its ceramic components. At Ceramic Fuel Cells Limited (CFCL), 15 wt.% alumina is added to the commonly used 10 mol% Y2O3–ZrO2 (YSZ) electrolyte to improve both the fracture toughness and grain-boundary conductivity of the electrolyte. This study investigates the effect of such addition of alumina on the anode|electrolyte interface; more specifically, which reactions occur with the Al2O3 at the interface and how these reactions influence fuel cell performance. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to characterize the formation of NiAl2O4 in the alumina regions in the electrolyte. The NiAl2O4 is observed to grow into the adjacent grain boundaries to form an interconnected NiAl2O4 network up to 4 μm deep into the electrolyte. Impedance spectroscopy shows that the formation of NiAl2O4 does not affect the grain bulk ionic conductivity. The grain-boundary conductivity is markedly reduced at low temperatures. However, at the high SOFC operating temperature at CFCL (850 °C) the contribution of the grain-boundary conductivity to the total conductivity is diminished, and the NiAl2O4 is found not to have an effect on the total electrolyte conductivity and is deemed not to be a detrimental reaction.  相似文献   

6.
The stability of the high lithium ion conducting glass ceramics, Li1+x+yTi2−xAlxSiyP3−yO12 (LTAP) in alkaline aqueous solutions with and without LiCl has been examined. A significant conductivity decrease of the LTAP plate immersed in 0.057 M LiOH aqueous solution at 50 °C for 3 weeks was observed. However, no conductivity change of the LTAP plate immersed in LiCl saturated LiOH aqueous solutions at 50 °C for 3 weeks was observed. The pH value of the LiCl-LiOH-H2O solution with saturated LiCl was in a range of 7-9. The molarity of LiOH and LiCl in the LiOH and LiCl saturated aqueous solution were estimated to be 5.12 and 11.57 M, respectively, by analysis of Li+ and OH. The high concentration of LiOH and the low pH value of 8.14 in this solution suggested that the dissociation of LiOH into Li+ and OH is too low in the solution with a high concentration of Li+. These results suggest that the water stable LTAP could be used as a protect layer of the lithium metal anode in the lithium/air cell with LiCl saturated aqueous solution as the electrolyte, because the content of OH ions in the LiCl saturated aqueous solution does not increase via the cell reaction of Li + 1/2O2 + H2O → 2LiOH, and LTAP is stable under a deep discharge state.  相似文献   

7.
Non-flammable polymer gel electrolytes (NPGE) consisting of 1.0 mol dm−3 (=M) LiBF4/EC + DEC + TEP (55:25:20 volume ratio) + PVdF-HFP (EC: ethylene carbonate, DEC: diethyl carbonate, TEP: triethylphosphate, PVdF-HFP: poly(vinyledenefluoride-co-hexafluoropropylene)) have been developed for rechargeable lithium batteries. The effects of addition of Lewis-acid polymer (LAP) with different mole ratio in NPGE have been studied. The addition of LAP improved physico-chemical properties of NPGE, viz ionic conductivity and lithium ion transport number, as well as mechanical and thermal properties. The ionic conductivity of the gel electrolyte containing LAP reached that of the base solution electrolyte (1.0 M LiBF4/EC + DEC + TEP (55:25:20)) along with better mechanical properties. Interfacial resistance at Li-metal electrode/NPGE was also improved by introducing LAP in the gel.  相似文献   

8.
An understanding of the solid electrolyte interphase (SEI) that forms on the lithium-metal surface is essential to the further development of rechargeable lithium-metal batteries. Currently, the formation of dendrites during cycling, which can lead to catastrophic failure of the cell, has mostly halted research on these power sources. The discovery of ionic liquids as electrolytes has rekindled the possibility of safe, rechargeable, lithium-metal batteries. The current limitation of ionic liquid electrolytes, however, is that when compared with conventional non-aqueous electrolytes the device rate capability is limited. Recently, we have shown that the addition of a zwitterion such as N-methyl-N-(butyl sulfonate) pyrrolidinium resulted in enhancement of the achievable current densities by 100%. It was also found that the resistance of the SEI layer in the presence of a zwitterion is 50% lower. In this study, a detailed chemical and electrochemical analysis of the SEI that forms in both the presence and absence of a zwitterion has been conducted. Clear differences in the chemical nature and also the thickness of the SEI are observed and these may account for the enhancement of operating current densities.  相似文献   

9.
Cuprous oxide-coated graphite was synthesized by a polyol reduction process and analyzed by scanning electron microscopy, charge–discharge measurements and cyclic voltammetry. Cu2O exists at the surface of graphite in the form of nanoparticles and nanorods. The coated cuprous oxide layer acts as a protective layer separating graphite from the propylene carbonate (PC)-based electrolyte solution, and greatly suppresses PC decomposition and graphite exfoliation in PC-based electrolyte systems.  相似文献   

10.
Tetraglyme (G4)-lithium bis(trifluoromethanesulfonyl)amide (TFSA) complexes with different G4 ratio were investigated. An increase in the amount of G4 led to the decrease in the viscosity, and increase in the ionic conductivity of the complex, and G4-LiTFSA showed higher thermal stabilities than the conventional organic electrolyte, when the molar ratio of G4 was more than 40 mol%. The increase in the G4 amount improved the rate capabilities of Li/LiCoO2 cells in the range where the molar ratio of G4 was between 40 mol% and 60 mol%. The stable Li ion intercalation-deintercalation was not observed in the Li/graphite cell of [Li(G4)][TFSA] (G4: 50 mol%) without additives. However, the additives for forming solid electrolyte interface (SEI) film, such as vinylene carbonate, vinylethylene carbonate, and 1,3-propane sultone, led to the charge-discharge performance comparable to that of the conventional organic electrolyte. The adoption of Li4Ti5O12 and LiFePO4 led to excellent reversibilities of the Li half cells using [Li(G4)][TFSA], probably because of the favorable operation voltage. In the case of the LiFePO4/Li4Ti5O12 cell, the cell with [Li(G4)][TFSA] showed the better rate capability than that with the conventional organic electrolyte, when the rate was less than 1 CmA, and it is concluded that [Li(G4)][TFSA] can be the candidate as the alternative of organic electrolytes when the most appropriate electrode-active materials are used.  相似文献   

11.
Insertion of conductive fillers into solvent-free polymer electrolytes enhances electrochemical behavior of the electrolyte membranes leading to higher ionic conductivity, lower capacity fading, and so on. Although, the presence of the conductive fillers in the polymer matrixes increases the risk of electrical shorting, herein, polyethylene oxide (PEO)-based core-shell nanofibers were prepared via a simple electrospinning method. In the core-shell electrospun fibers, ethylene carbonate (EC) and lithium perchlorate (LiClO4) were used as a plasticizer and as a lithium salt, respectively. The core component was enwrapped by the PEO/EC/LiClO4 shell part incorporated with SiO2 nanoparticles. Various properties of the fabricated membranes were evaluated by changing the ratio of multiwall carbon nanotubes (MWCNTs) in the core part of the nanofibers. The morphology and core-shell structure of the electrospun fibers were studied by FESEM and TEM images. According to FTIR and XRD results, addition of the EC plasticizer and the fillers into the as-spun fibers increased the fraction of free ions and the amorphous regions. From electrochemical impedance spectroscopy studies, the ionic conductivity enhanced by insertion of the plasticizer molecules and the filler particles into the core-shell structures. The highest ionic conductivities of 0.09 and 0.21 mS.cm−1 were obtained for the free-filler and the filler-loaded nanofibrous membranes, respectively. The prepared mats obeyed the Arrhenius behavior ( R2~1 ). Dielectric studies confirmed the obtained data from the ionic conductivities. Furthermore, the capacity residual was enhanced from 69% to 85% by incorporation of the MWCNTs filler into the core component of the electrospun nanofibers. The presented results may facilitate development of versatile nanofibrous membranes embedded with the conductive fillers as solvent-free electrolytes applicable in lithium-ion batteries.  相似文献   

12.
The process of vacuum slurry coating for the fabrication of a dense and thin electrolyte film on a porous anode tube is investigated for application in solid oxide fuel cells. 8 mol% yttria stabilized zirconia is coated on an anode tube by vacuum slurry-coating process as a function of pre-sintering temperature of the anode tube, vacuum pressure, slurry concentration, number of coats, and immersion time. A dense electrolyte layer is formed on the anode tube after final sintering at 1400 °C. With decrease in the pre-sintering temperature of the anode tube, the grain size of the coated electrolyte layer increases and the number of surface pores in the coating layer decreases. This is attributed to a reduced difference in the respective shrinkage of the anode tube and the electrolyte layer. The thickness of the coated electrolyte layer increases with the content of solid powder in the slurry, the number of dip-coats, and the immersion time. Although vacuum pressure has no great influence on the electrolyte thickness, higher vacuum produces a denser coating layer, as confirmed by low gas permeability and a reduced number of defects in the coating layer. A single cell with the vacuum slurry coated electrolyte shows a good performance of 620 mW cm−2 (0.7 V) at 750 °C. These experimental results indicate that the vacuum slurry-coating process is an effective method to fabricate a dense thin film on a porous anode support.  相似文献   

13.
Solid polymer electrolytes (SPEs) with high ionic conductivity and acceptable mechanical properties are of particular interest for increasing the performance of batteries. Our previous studies indicated that copolymers could be good candidates for SPE materials due to the variable properties contributed by each block. A series of copolymers applied in this research was poly(ethylene oxide)-block-polyethylene, PEO-b-PE, which contains a conductive block (PEO block) and a reinforcement block (PE block). This study examines the effects of composition and molecular weight of the copolymers on performance of the resulting SPEs. The ternary SPEs were prepared by addition of copolymers into PEO/LiClO4. It was found that increasing the PE block percentage in the copolymer resulted in a significant increase in both ionic conductivity and mechanical properties. The SPEs that contained the highest percentage of PE block, 80 wt%, exhibits the best performances. The results showed an increase of more than two orders in ionic conductivity, about 350% increase in tensile modulus, and about 97% increase in ultimate tensile strength when the PE block increased from 50 wt% to 80 wt%. It was also observed that increasing the molecular weight of the copolymer resulted in better mechanical properties, and an identical ionic conductivity.  相似文献   

14.
In this study, a series of nanocomposite polymer electrolytes (NCPEs) with high conductivity and lithium ion transference number, PEO/LiClO4/SAP, were prepared from high molecular weight polyethylene oxide (PEO), LiClO4 and low content of homemade silica aerogel powder (SAP), which had higher surface area and pore volume than the conventional silica particle. From the SEM images it was found that the SAP nanoparticles were well dispersed in the PEO polymer electrolyte matrix. The characterization and interactions in the CPEs were studied by DSC, XRD, FT-IR and 7Li NMR analysis. The ac impedance results showed that the ionic conductivity of the CPE was significantly improved by the addition of the as-prepared SAP. The maximum ambient ionic conductivity obtained from the CPE with EO/Li = 6 and 2 wt.% of SAP (O6A2) was about threefold higher than that of the corresponding polymer electrolyte without SAP (O6). In addition, the lithium ion transference number (t+) of O6A2 at 70 °C was as high as 0.67, which was also three times higher than that of O6 and has not been previously reported for the PEO–LiX-based polymer electrolytes.  相似文献   

15.
Polysiloxane multilayers were covalently bonded to the surface of natural graphite particles via diazonium chemistry and silylation reaction. The as-prepared graphite exhibited excellent discharge–charge behavior as negative electrode materials in lithium ion batteries. The improvement in the electrochemical performance of the graphite electrodes was attributed to the formation of a stable and flexible passive film on their surfaces. It was also revealed that the chemical compositions of the multilayers exerted influence on the electrochemical behavior of the graphite electrodes. The result of this study presents a new strategy to the formation of elastic and strong passive film on the graphite electrode via molecular design. Owing to the diversity of polysilxoane multilayers, this method also enables researchers to control the surface chemistries of carbonaceous materials with flexibility.  相似文献   

16.
All-solid-state lithium secondary batteries using LiCoO2 particles coated with amorphous Li2O-TiO2 films as an active material and Li2S-P2S5 glass-ceramics as a solid electrolyte were fabricated; the electrochemical performance of the batteries was investigated. The interfacial resistance between LiCoO2 and solid electrolyte was decreased by the coating of Li2O-TiO2 films on LiCoO2 particles. The rate capability of the batteries using the LiCoO2 coated with Li2Ti2O5 (Li2O·2TiO2) film was improved because of the decrease of the interfacial resistance of the batteries. The cycle performance of the all-solid-state batteries under a high cutoff voltage of 4.6 V vs. Li was highly improved by using LiCoO2 coated with Li2Ti2O5 film. The oxide coatings are effective in suppressing the resistance increase between LiCoO2 and the solid electrolyte during cycling. The battery with the LiCoO2 coated with Li2Ti2O5 film showed a large initial discharge capacity of 130 mAh/g and good capacity retention without resistance increase after 50 cycles at the current density of 0.13 mA/cm2.  相似文献   

17.
Rate capability of LiNi0.8Co0.15Al0.05O2 in solid-state cells was investigated with 70Li2S-30P2S5 glass-ceramics as a sulfide solid electrolyte. It showed higher rate capability than LiCoO2; discharge capacity observed at a current density of 10 mA cm−2 was ca. 70 mAh g−1. Surface coating with Li4Ti5O12 onto the LiNi0.8Co0.15Al0.05O2 particles further improved the high-rate performance to give ca. 110 mAh g−1. The rate capability promises to realize all-solid-state lithium secondary batteries with very high performance.  相似文献   

18.
The effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells was investigated. The solvents with large donor number enhanced the open-circuit voltage but reduced the short-circuit current density. By mixing 30 vol.% NMP with 70 vol.% GBL, the open-circuit voltage increased from 0.55 to 0.632 V and the fill factor increased from 0.607 to 0.613 while the short-circuit current density decreased little. The further addition of 0.4 M pyridine into the above mixed solvent caused a huge increase of overall conversion efficiency from 5.73 to 6.70% under irradiation of 100 mW cm−2.  相似文献   

19.
3D hierarchical SnS2 microspheres have been designed and fabricated via a one-pot biomolecule-assisted hydrothermal method. When used as anode material in rechargeable Li-ion batteries, the as-formed SnS2 microspheres self-assembled by layered nanosheets, show high lithium storage capacity, long-term cycling stability and superior rate capability. After charge-discharge for 100 cycles, the remaining discharge capacities are kept as high as 570.3, 486.2, and 264 mAh g−1 at 1C (0.65 A g−1), 5C, and 10C rate, respectively. Such outstanding performance of these SnS2 microspheres is ascribed to their unique 3D hierarchical structures. The new charge-discharge mechanism of 3D SnS2 microsphere as anode in Li-ion battery is further revealed.  相似文献   

20.
The formation of a solid electrolyte interface (SEI) on the surface of graphite in a LiBC2O4F2-based electrolyte was studied by galvanostatic cycling and electrochemical impedance spectroscopy (EIS). The results show that a short irreversible plateau at 1.5–1.7 V versus Li+/Li was inevitably present in the first cycle of graphite, which is attributed to the reduction of –OCOCOO pieces as a result of the chemical equilibrium of oxalatoborate ring-opening. This is the inherent property of LiBC2O4F2 and it is independent of the type of electrode. EIS analyses suggest that the reduced products of LiBC2O4F2 at 1.5–1.7 V participate into the formation of a preliminary SEI. Based on the distribution of the initial irreversible capacity and the correlation of the SEI resistance and graphite potential, it was concluded that the SEI formed at potentials below 0.25 V during which the lithiation takes place is most responsible for the long-term operation of the graphite electrode in Li-ion batteries. In addition, the results show that the charge-transfer resistance reflects well the kinetics of the electrode reactions, and that its value is in inverse proportion to the differential capacity of the electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号