首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Automatic text segmentation and text recognition for video indexing   总被引:13,自引:0,他引:13  
Efficient indexing and retrieval of digital video is an important function of video databases. One powerful index for retrieval is the text appearing in them. It enables content-based browsing. We present our new methods for automatic segmentation of text in digital videos. The algorithms we propose make use of typical characteristics of text in videos in order to enable and enhance segmentation performance. The unique features of our approach are the tracking of characters and words over their complete duration of occurrence in a video and the integration of the multiple bitmaps of a character over time into a single bitmap. The output of the text segmentation step is then directly passed to a standard OCR software package in order to translate the segmented text into ASCII. Also, a straightforward indexing and retrieval scheme is introduced. It is used in the experiments to demonstrate that the proposed text segmentation algorithms together with existing text recognition algorithms are suitable for indexing and retrieval of relevant video sequences in and from a video database. Our experimental results are very encouraging and suggest that these algorithms can be used in video retrieval applications as well as to recognize higher level semantics in videos.  相似文献   

2.
This paper describes a performance evaluation study in which some efficient classifiers are tested in handwritten digit recognition. The evaluated classifiers include a statistical classifier (modified quadratic discriminant function, MQDF), three neural classifiers, and an LVQ (learning vector quantization) classifier. They are efficient in that high accuracies can be achieved at moderate memory space and computation cost. The performance is measured in terms of classification accuracy, sensitivity to training sample size, ambiguity rejection, and outlier resistance. The outlier resistance of neural classifiers is enhanced by training with synthesized outlier data. The classifiers are tested on a large data set extracted from NIST SD19. As results, the test accuracies of the evaluated classifiers are comparable to or higher than those of the nearest neighbor (1-NN) rule and regularized discriminant analysis (RDA). It is shown that neural classifiers are more susceptible to small sample size than MQDF, although they yield higher accuracies on large sample size. As a neural classifier, the polynomial classifier (PC) gives the highest accuracy and performs best in ambiguity rejection. On the other hand, MQDF is superior in outlier rejection even though it is not trained with outlier data. The results indicate that pattern classifiers have complementary advantages and they should be appropriately combined to achieve higher performance. Received: July 18, 2001 / Accepted: September 28, 2001  相似文献   

3.
Stop word location and identification for adaptive text recognition   总被引:2,自引:0,他引:2  
Abstract. We propose a new adaptive strategy for text recognition that attempts to derive knowledge about the dominant font on a given page. The strategy uses a linguistic observation that over half of all words in a typical English passage are contained in a small set of less than 150 stop words. A small dictionary of such words is compiled from the Brown corpus. An arbitrary text page first goes through layout analysis that produces word segmentation. A fast procedure is then applied to locate the most likely candidates for those words, using only widths of the word images. The identity of each word is determined using a word shape classifier. Using the word images together with their identities, character prototypes can be extracted using a previously proposed method. We describe experiments using simulated and real images. In an experiment using 400 real page images, we show that on average, eight distinct characters can be learned from each page, and the method is successful on 90% of all the pages. These can serve as useful seeds to bootstrap font learning. Received October 8, 1999 / Revised March 29, 2000  相似文献   

4.
This paper investigates the automatic reading of unconstrained omni-writer handwritten texts. It shows how to endow the reading system with learning faculties necessary to adapt the recognition to each writer's handwriting. In the first part of this paper, we explain how the recognition system can be adapted to a current handwriting by exploiting the graphical context defined by the writer's invariants. This adaptation is guaranteed by activating interaction links over the whole text between the recognition procedures of word entities and those of letter entities. In the second part, we justify the need of an open multiple-agent architecture to support the implementation of such a principle of adaptation. The proposed platform allows to plug expert treatments dedicated to handwriting analysis. We show that this platform helps to implement specific collaboration or cooperation schemes between agents which bring out new trends in the automatic reading of handwritten texts.  相似文献   

5.
This paper describes an adaptive recognition system for isolated handwritten characters and the experiments carried out with it. The characters used in our experiments are alphanumeric characters, including both the upper- and lower-case versions of the Latin alphabets and three Scandinavian diacriticals. The writers are allowed to use their own natural style of writing. The recognition system is based on the k-nearest neighbor rule. The six character similarity measures applied by the system are all based on dynamic time warping. The aim of the first experiments is to choose the best combination of the simple preprocessing and normalization operations and the dissimilarity measure for a multi-writer system. However, the main focus of the work is on online adaptation. The purpose of the adaptations is to turn a writer-independent system into writer-dependent and increase recognition performance. The adaptation is carried out by modifying the prototype set of the classifier according to its recognition performance and the user's writing style. The ways of adaptation include: (1) adding new prototypes; (2) inactivating confusing prototypes; and (3) reshaping existing prototypes. The reshaping algorithm is based on the Learning Vector Quantization. Four different adaptation strategies, according to which the modifications of the prototype set are performed, have been studied both offline and online. Adaptation is carried out in a self-supervised fashion during normal use and thus remains unnoticed by the user. Received June 30, 1999 / Revised September 29, 2000  相似文献   

6.
In this paper, we present a hybrid online handwriting recognition system based on hidden Markov models (HMMs). It is devoted to word recognition using large vocabularies. An adaptive segmentation of words into letters is integrated with recognition, and is at the heart of the training phase. A word-model is a left-right HMM in which each state is a predictive multilayer perceptron that performs local regression on the drawing (i.e., the written word) relying on a context of observations. A discriminative training paradigm related to maximum mutual information is used, and its potential is shown on a database of 9,781 words. Received June 19, 2000 / Revised October 16, 2000  相似文献   

7.
The automation of business form processing is attracting intensive research interests due to its wide application and its reduction of the heavy workload due to manual processing. Preparing clean and clear images for the recognition engines is often taken for granted as a trivial task that requires little attention. In reality, handwritten data usually touch or cross the preprinted form frames and texts, creating tremendous problems for the recognition engines. In this paper, we contribute answers to two questions: “Why do we need cleaning and enhancement procedures in form processing systems?” and “How can we clean and enhance the hand-filled items with easy implementation and high processing speed?” Here, we propose a generic system including only cleaning and enhancing phases. In the cleaning phase, the system registers a template to the input form by aligning corresponding landmarks. A unified morphological scheme is proposed to remove the form frames and restore the broken handwriting from gray or binary images. When the handwriting is found touching or crossing preprinted texts, morphological operations based on statistical features are used to clean it. In applications where a black-and-white scanning mode is adopted, handwriting may contain broken or hollow strokes due to improper thresholding parameters. Therefore, we have designed a module to enhance the image quality based on morphological operations. Subjective and objective evaluations have been studied to show the effectiveness of the proposed procedures. Received January 19, 2000 / Revised March 20, 2001  相似文献   

8.
9.
10.
Out-of-order diacriticals introduce significant complexity to the design of an online handwriting recognizer, because they require some reordering of the time domain information. It is common in cursive writing to write the body of an `i' or `t' during the writing of the word, and then to return and dot or cross the letter once the word is complete. The difficulty arises because we have to look ahead, when scoring one of these letters, to find the mark occurring later in the writing stream that completes the letter. We should also remember that we have used this mark, so that we don't use it again for a different letter, and we should also penalize a word if there are some marks that look like diacriticals that are not used. One approach to this problem is to scan the writing some distance into the future to identify candidate diacriticals, remove them in a preprocessing step, and associate them with the matching letters earlier in the word. If done as a preliminary operation, this approach is error-prone: marks that are not diacriticals may be incorrectly identified and removed, and true diacriticals may be skipped. This paper describes a novel extension to a forward search algorithm that provides a natural mechanism for considering alternative treatments of potential diacriticals, to see whether it is better to treat a given mark as a diacritical or not, and directly compare the two outcomes by score. Received October 30, 1998 / Revised January 25, 1999  相似文献   

11.
In this paper, an integrated offline recognition system for unconstrained handwriting is presented. The proposed system consists of seven main modules: skew angle estimation and correction, printed-handwritten text discrimination, line segmentation, slant removing, word segmentation, and character segmentation and recognition, stemming from the implementation of already existing algorithms as well as novel algorithms. This system has been tested on the NIST, IAM-DB, and GRUHD databases and has achieved accuracy that varies from 65.6% to 100% depending on the database and the experiment.  相似文献   

12.
Segmentation and recognition of Chinese bank check amounts   总被引:1,自引:0,他引:1  
This paper describes a system for the recognition of legal amounts on bank checks written in the Chinese language. It consists of subsystems that perform preprocessing, segmentation, and recognition of the legal amount. In each step of the segmentation and recognition phases, a list of possible choices are obtained. An approach is adopted whereby a large number of choices can be processed effectively and efficiently in order to achieve the best recognition result. The contribution of this paper is the proposal of a grammar checker for Chinese bank check amounts. It is found to be very effective in reducing the substitution error rate. The recognition rate of the system is 74.0%, the error rate is 10.4%, and the reliability is 87.7%. Received June 9, 2000 / Revised January 10, 2001  相似文献   

13.
Offline handwritten Amharic word recognition   总被引:1,自引:0,他引:1  
This paper describes two approaches for Amharic word recognition in unconstrained handwritten text using HMMs. The first approach builds word models from concatenated features of constituent characters and in the second method HMMs of constituent characters are concatenated to form word model. In both cases, the features used for training and recognition are a set of primitive strokes and their spatial relationships. The recognition system does not require segmentation of characters but requires text line detection and extraction of structural features, which is done by making use of direction field tensor. The performance of the recognition system is tested by a dataset of unconstrained handwritten documents collected from various sources, and promising results are obtained.  相似文献   

14.
We discuss development of a word-unigram language model for online handwriting recognition. First, we tokenize a text corpus into words, contrasting with tokenization methods designed for other purposes. Second, we select for our model a subset of the words found, discussing deviations from an N-most-frequent-words approach. From a 600-million-word corpus, we generated a 53,000-word model which eliminates 45% of word-recognition errors made by a character-level-model baseline system. We anticipate that our methods will be applicable to offline recognition as well, and to some extent to other recognizers, such as speech recognizers and video retrieval systems. Received: November 1, 2001 / Revised version: July 22, 2002  相似文献   

15.
In this paper, a two-stage HMM-based recognition method allows us to compensate for the possible loss in terms of recognition performance caused by the necessary trade-off between segmentation and recognition in an implicit segmentation-based strategy. The first stage consists of an implicit segmentation process that takes into account some contextual information to provide multiple segmentation-recognition hypotheses for a given preprocessed string. These hypotheses are verified and re-ranked in a second stage by using an isolated digit classifier. This method enables the use of two sets of features and numeral models: one taking into account both the segmentation and recognition aspects in an implicit segmentation-based strategy, and the other considering just the recognition aspects of isolated digits. These two stages have been shown to be complementary, in the sense that the verification stage compensates for the loss in terms of recognition performance brought about by the necessary tradeoff between segmentation and recognition carried out in the first stage. The experiments on 12,802 handwritten numeral strings of different lengths have shown that the use of a two-stage recognition strategy is a promising idea. The verification stage brought about an average improvement of 9.9% on the string recognition rates. On touching digit pairs, the method achieved a recognition rate of 89.6%. Received June 28, 2002 / Revised July 03, 2002  相似文献   

16.
This paper presents the online handwriting recognition system NPen++ developed at the University of Karlsruhe and Carnegie Mellon University. The NPen++ recognition engine is based on a multi-state time delay neural network and yields recognition rates from 96% for a 5,000 word dictionary to 93.4% on a 20,000 word dictionary and 91.2% for a 50,000 word dictionary. The proposed tree search and pruning technique reduces the search space considerably without losing too much recognition performance compared to an exhaustive search. This enables the NPen++ recognizer to be run in real-time with large dictionaries. Initial recognition rates for whole sentences are promising and show that the MS-TDNN architecture is suited to recognizing handwritten data ranging from single characters to whole sentences. Received September 3, 2000 / Revised October 9, 2000  相似文献   

17.
Handprinted word recognition on a NIST data set   总被引:1,自引:0,他引:1  
An approach to handprinted word recognition is described. The approach is based on the use of generating multiple possible segmentations of a word image into characters and matching these segmentations to a lexicon of candidate strings. The segmentation process uses a combination of connected component analysis and distance transform-based, connected character splitting. Neural networks are used to assign character confidence values to potential character within word images. Experimental results are provided for both character and word recognition modules on data extracted from the NIST handprinted character database.  相似文献   

18.
An optical character recognition (OCR) framework is developed and applied to handprinted numeric fields recognition. The numeric fields were extracted from binary images of VISA? credit card application forms. The images include personal identity numbers and telephone numbers. The proposed OCR framework is a cascaded neural networks. The first stage is a self-organizing feature map algorithm. The second stage maps distance values into allograph membership values using a gradient descent learning algorithm. The third stage is a multi-layer feedforward network. In this paper, we present experimental results which demonstrate the ability to read handprinted numeric fields. Experiments were performed on a test data set from the CCL/ITRI database which consists of over 90,390 handwritten numeric digits.  相似文献   

19.
In this paper we describe a database that consists of handwritten English sentences. It is based on the Lancaster-Oslo/Bergen (LOB) corpus. This corpus is a collection of texts that comprise about one million word instances. The database includes 1,066 forms produced by approximately 400 different writers. A total of 82,227 word instances out of a vocabulary of 10,841 words occur in the collection. The database consists of full English sentences. It can serve as a basis for a variety of handwriting recognition tasks. However, it is expected that the database would be particularly useful for recognition tasks where linguistic knowledge beyond the lexicon level is used, because this knowledge can be automatically derived from the underlying corpus. The database also includes a few image-processing procedures for extracting the handwritten text from the forms and the segmentation of the text into lines and words. Received September 28, 2001 / Revised October 10, 2001  相似文献   

20.
Dot-matrix text recognition is a difficult problem, especially when characters are broken into several disconnected components. We present a dot-matrix text recognition system which uses the fact that dot-matrix fonts are fixed-pitch, in order to overcome the difficulty of the segmentation process. After finding the most likely pitch of the text, a decision is made as to whether the text is written in a fixed-pitch or proportional font. Fixed-pitch text is segmented using a pitch-based segmentation process that can successfully segment both touching and broken characters. We report performance results for the pitch estimation, fixed-pitch decision and segmentation, and recognition processes. Received October 18, 1999 / Revised April 21, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号