首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
原位生成TiB_2/Al-Si-Mg复合材料的组织与性能   总被引:5,自引:0,他引:5  
结合LSM法和MCR法原位反应生成TiB2 粒子增强Al Si Mg复合材料。研究发现 :原位生成TiB2 粒子呈等轴状且尺寸 <1μm ,大都均匀分布在共晶组织中 ,与共晶Si交织在一起 ,在α(Al)中只有少量的TiB2 粒子 ;原位TiB2 粒子可明显强化Al Si Mg复合材料 ,且随着TiB2 粒子数量的增加 ,强化效果也随之提高 ,而且延伸率也略有升高 ,如 6 %TiB2 /ZL10 4复合材料室温拉伸强度可达 2 96MPa ,延伸率为 5 .5 %;热处理 (T6)可将共晶Si由原先的连续棒状变为孤立的颗粒状 ,大幅度提高材料抗拉强度 ,使 6 %TiB2 /ZL10 4复合材料室温拉伸强度达386MPa ,而材料仍属于韧性材料  相似文献   

2.
在位生成TiB2/Al—Si—Mg复合材料的组织与性能   总被引:6,自引:2,他引:4  
结合LSM法和MCR法原位反应生成TiB2粒子增强Al-Si-Mg复合材料。研究发现,原位生成TiB2粒子呈等轴状且尺寸<1um,大都均匀分布在共晶组织中,与共晶Si交织在一起,在α(Al)中只有少量的TiB2粒子。原位TiB2粒子可明显强化Al-Si-Mg复合材料,且随着TiB2粒子数量的增加,强化效果也随之提高,而且延伸率也略有升高,如6%TiB2/Zl104复合材料室温拉伸强度可达296MPa,延伸率为5.5%,热处理(T6)可将共晶Si由原先的连续棒状变为孤立的颗粒状,大幅度提高材料抗拉强度,使6%TiB2/Zl104复合材料室温拉伸强度达386MPa,而材料仍属于韧性材料。  相似文献   

3.
《铸造技术》2016,(5):848-852
采用半固态机械搅拌铸造法,制备了增强体平均粒径50 nm的Si C颗粒增强镁基复合材料(n-Si Cp/Mg9Al),分别对不同质量分数纳米颗粒、不同搅拌时间和不同搅拌温度时,复合材料的微观组织和力学性能进行了研究。结果表明,随着Si C含量的增加,合金基体组织先细化后又出现变粗的现象,适当延长搅拌时间能更有效地细化组织,在较低温度下搅拌可以更明显地细化复合材料的微观组织。合金抗拉强度随着Si C含量的增加先增加后降低,在Si C含量为1.5%时最好,为198 MPa。在含量为2%时又有所降低,但是高于不加Si C时。搅拌时间为15 min时,复合材料的屈服强度、抗拉强度较之基体分别提高了12.8%、22%,断后伸长率由基体合金的2%提升到4%。继续延长搅拌时间到30 min,材料的室温拉伸性能出现明显恶化。不同搅拌温度下Si Cp/Mg9Al纳米复合材料与铸态Mg9Al合金相比其室温拉伸性能有明显提高,搅拌温度为600℃的Si Cp/Mg9Al纳米复合材料的室温拉伸性能最好,其屈服强度、抗拉强度和断后伸长率分别为106 MPa、155 MPa和4%。  相似文献   

4.
在高能超声场下利用熔体原位反应制备TiB2/Al-30Si复合材料;利用XRD、SEM及干磨损试验研究此复合材料的显微组织和磨损性能。结果表明:在高能超声场作用下,原位TiB2颗粒在铝基体中分布均匀,形貌为圆形或四边形,尺寸在0.1-1.5μm之间。初生硅的形貌为四边形,平均尺寸为10μm。随着高能超声功率的增加,Al-30Si基体合金及TiB2/Al-30Si复合材料的硬度明显提高;特别是当超声功率为1.2 kW时,复合材料的硬度达到412 MPa,是基体合金的1.3倍。复合材料的磨损性能得到明显提高,载荷的变化对复合材料的磨损量影响不大。  相似文献   

5.
(TiB2+SiC)/ZL109复合材料的制备及其力学性能   总被引:5,自引:1,他引:5  
赵德刚  刘相法  边秀房 《铸造》2004,53(2):97-100
采用搅拌铸造和原位反应合成相结合的方法制备出(TiB2 SiC)/ZL109复合材料.对该复合材料的显微组织观测表明,SiC颗粒与TiB2颗粒分布较均匀.通过对材料的室温拉伸性能及硬度测试,发现TiB2、SiC两相颗粒增强AlSi基复合材料的硬度明显比单一颗粒增强复合材料提高,而其拉伸强度也略有提高,弥补了单一SiC颗粒增强铝基复合材料UTS降低的不足.(TiB2 SiC)/ZL109复合材料较基体合金ZL109硬度提高了34.8%.  相似文献   

6.
原位增强TiB2/2014Al复合材料的摩擦磨损性能   总被引:1,自引:0,他引:1  
采用混合盐反应(MixedSaltReaction)原位合成法成功制备了TiB2/2014Al复合材料,并对其摩擦磨损性能进行了研究。采用X射线衍射分析物相和扫描、透射电镜观察了其微观组织。结果表明,原位生成的TiB2颗粒非常细小,尺寸小于1μm,内生TiB2颗粒分布均匀,明显细化了复合材料组织。室温干滑动摩擦磨损试验表明,复合材料耐磨性高于基体合金,基体合金磨损机制以粘着磨损为主,复合材料的磨损机制为典型的磨粒磨损。  相似文献   

7.
将纯钛粉和碳化硼粉按一定比例混合均匀后,通过反应热压方法原位合成制备了增强体TiB晶须和TiC颗粒钛基复合材料,增强体体积分数为5%.利用同样方法制备了纯钛材料.热挤压后,利用X射线衍射仪分析研究了反应自生增强体组成,通过透射电镜和扫描电镜,研究了钛基复合材料的微观组织变化规律及钛基复合材料在室温和高温下拉伸断口形貌特征.研究结果表明,纯钛和B4C在1 200℃发生化学反应,原位合成产生2种不同形状的增强体,即短纤维状TiB晶须和等轴状的TiC颗粒.原位增强体与钛基体具有良好的界面结合,没有明显的界面反应.室温拉伸2种材料均呈脆性断裂.高温拉伸时,纯钛拉伸断口韧窝比较大,尺寸较深.复合材料韧窝尺寸较小.  相似文献   

8.
李高宏  李建平  夏峰  赵玉厚  董晟全  杨通 《铸造》2005,54(5):450-454
对利用原位反应与高剪切液态搅拌复合专利技术制备的Al3Ti-TiB2-SiC/Al-13%Si复合材料的增强相的形成热力学进行了理论计算和分析,并采用差热分析法(DTA)进行了试验验证.研究表明:(1)Al-Ti-B体系加入到Al-13%Si熔体中可发生原位反应,形成增强相,原位反应的开始温度为905.3℃,结束温度为1 061.23℃;(2)Al-Ti-B体系加入到Al-13%Si熔体中,制备颗粒增强Al-13%Si复合材料的增强相为TiB2和Al3Ti,但TiB2形成能力最强.  相似文献   

9.
快速凝固粉末冶金TiB2颗粒增强AlFeVSi耐热铝合金   总被引:1,自引:1,他引:1  
利用快速凝固粉末冶金方法制备了TiB2颗粒增强Al-8.5Fe-1.3V-1.7Si耐热铝合金试样以及不含TiB2颗粒的基体合金试样,通过光学显微镜、扫描电镜分析了其显微组织和断口形貌,采用X射线衍射进行了物相分析,并进行力学性能测试.结果发现,TiB2颗粒能有效地添加到Al-8.5Fe-1.3V-1.7Si耐热铝合金基体中,并能有效地抑制平衡相Al13Fe4的析出,且能细化晶粒,TiB2颗粒的存在使得粒度小于74μm粉末冶金合金挤压试样的室温强度高达454.1 MPa,屈服强度达407.8 MPa,延伸率保持在7.7%;350℃高温强度稳定在210 MPa以上,延伸率稳定在7.7%以上.  相似文献   

10.
以TC4和B4C粉末为原料,通过放电等离子烧结法(SPS)并结合热挤压制备不同含量TiB和TiC增强TC4基复合材料,研究以TC4-B4C为原位反应体系生成不同含量TiB和TiC对TMCs的微观组织和力学性能的影响规律及其高温力学性能。结果表明:原位生成的TiC和TiB与基体结合牢固,TiC呈类球形颗粒状,TiB呈晶须状;增强相在基体中呈现出沿一次颗粒边界分布的三维网络状形貌;与未增强TC4合金相比较,复合材料基体晶粒显著细化,并存在较高的位错密度,TC4基复合材料的室温和高温性能得到显著提升;在室温拉伸下,当B4C的含量(质量分数)为0.5%时,基体的连通性较好,表现出较高的强度(抗拉强度1246 MPa)和较好的伸长率(12.4%);在400℃下进行拉伸时,当B4C的含量为1.64%时,TC4基复合材料的抗拉强度和伸长率分别为1112 MPa和6.9%。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号