首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
黄亮  彭清  谢长君  张锐明  王琼 《电源技术》2021,45(10):1316-1319
质子交换膜燃料电池是一种多耦合非线性的复杂系统,电堆内部的水淹和膜干故障是其运行过程中最常见的故障.基于差分进化算法优化的支持向量机方法,可以用于燃料电池故障诊断,该方法在传统的支持向量机模型上增加了主成分提取和差分进化算法寻找最优参数,使模型得到更好的训练效果.采用电堆20片单电池电压为数据集进行相关的故障验证分析,结果表明:通过差分进化算法优化的支持向量机在燃料电池故障诊断中有着较高的准确度,具有一定的工程应用价值.  相似文献   

2.
针对支持向量机核函数参数和惩罚因子的不同取值会影响到柴油机故障分类正确率的问题,提出利用差分进化算法对支持向量机相关参数进行选择优化,并在实际中通过柴油机故障诊断实验证明了该方法能够获得较高的故障分类正确率,而且运行时间较短,即说明该方法具有一定的实用性。  相似文献   

3.
针对典型小样本数据的变压器故障诊断,文章提出了一种基于差分进化算法优化的支持向量机构建电力变压器故障诊断方法。该方法是采用差分进化算法来优化支持向量机核函数参数g和惩罚因子C,将优化过的支持向量机对小样本故障数据进行故障诊断。实验结果表明,该方法比网格搜索优化算法和粒子群优化算法具有更高的准确率,非常适合于电力变压器的故障诊断。  相似文献   

4.
基于最小二乘支持向量机的变压器故障诊断   总被引:1,自引:0,他引:1  
介绍了一种基于最小二乘支持向量机(LS-SVM)的电力变压器故障诊断方法,将样本数据进行归一化处理,以绝缘油中特征气体种类及其含量为依据建立变压器故障诊断LS-SVM模型,对模型中的核参数σ与惩罚参数C进行优化,并将测试样本输入训练好的LS-SVM模型,得到诊断结果。实例结果分析表明,LS-SVM将原先的非线性问题转化为求解线性问题,即使在小训练样本的前提下,也能获得更为准确的诊断结果。  相似文献   

5.
基于Morlet小波核多类支持向量机的故障诊断   总被引:3,自引:0,他引:3  
故障诊断问题实质上是一个模式识别问题,即多分类问题.采用Morlet小波来构造支持向量机(Support Vector Machine, SVM)的核函数,Morlet小波核SVM比普通SVM具有更好的鲁棒性和更强的泛化能力.在一对一算法的基础上实现Morlet小波核多类支持向量机的故障诊断,并将此方法成功应用于电厂汽轮发电机组的故障诊断.实验仿真结果表明Morlet小波核多类SVM故障分类器比BP神经网络训练和测试速度快,且其分类精度在高斯噪声干扰下还保持100%,比BP神经网络高出11.8%.因此该方法能够快速而准确地对电厂汽轮发电机组的故障进行诊断,满足电力系统实时操作的要求.  相似文献   

6.
介绍了基于粗糙集理论(RS)和支持向量机(SVM)的变压器故障诊断方法,使用这种方法可提高训练速度和诊断准确率。  相似文献   

7.
传统智能算法中因算法自身的固有缺陷,从而导致变压器故障诊断结果不理想。为此,针对相关向量机中核函数参数的选取对分类效果产生影响的问题,笔者在对运用粒子群算法优化相关向量机的可行性进行充分分析的基础上,构建了粒子群优化的相关向量机方法,以DGA作为特征输入,利用粒子群优化算法对核函数参数σ进行优化,以获得最优的相关向量机故障诊断方法,从而提高变压器的故障诊断精度。实例对比分析表明,与SVM、RVM方法相比,粒子群相关向量机方法具有更高的诊断精度。  相似文献   

8.
油中溶解气体分析是变压器绝缘故障诊断的重要方法。为了提高分类的准确度和可靠性,应用最小二乘支持向量机理论建立了变压器的分类模型。该模型以变压器油中5种主要特征气体作为输入量,以7种变压器状态作为输出量,选用了径向基核,使用了一对一的多分类算法,充分发挥了支持向量机具有较高泛化能力的优势。通过大量的实例分析,并将诊断结果与IEC三比值法、改良三比值法和BP神经网络的诊断结果相比较,表明基于径向基核的最小二乘支持向量机在变压器故障诊断中具有更高的准确率。  相似文献   

9.
针对基于DGA的变压器故障诊断方法在变压器故障诊断中存在的不足,提出了基于粒子群优化支持向量机的变压器故障诊断方法。建立支持向量机分类机的变压器故障诊断模型,并用粒子群算法优化参数,利用libSVM工具箱在MATLAB软件平台上训练支持向量机分类机,用训练良好的支持向量机诊断110kV立星变电站变压器故障状况。结果证明,采用基于粒子群优化支持向量机的变压器故障诊断结果与实际相符。此方法能够提高变压器故障诊断的准确率。  相似文献   

10.
基于支持向量机和交叉验证的变压器故障诊断   总被引:1,自引:0,他引:1  
张艳  吴玲 《中国电力》2012,45(11):52-55
为及时监测变压器潜伏性故障和准确诊断故障,提出基于优化惩罚因子C参数的支持向量机算法(C-SVC:C-support vector classification)和交叉验证算法相结合的变压器故障诊断方法。该方法利用变压器在故障时产生的氢气、甲烷、乙烷、乙烯、乙炔的体积分数数据建立训练集和测试集。在训练集中,该方法能自动优化出(寻找最佳)支持向量机的核函数的参数γ和惩罚因子C,利用优化的参数对训练集进行训练,可得到最佳的支持向量机模型,并用该模型对测试集进行分类,从而诊断出变压器的故障类型。变压器故障诊断实例分析结果证明,该方法可行,有效,且具有较高的故障诊断准确率。  相似文献   

11.
基于RPROP算法的变压器油中溶解气体分析故障诊断   总被引:1,自引:1,他引:1  
在分析BP算法和RPROP(振荡传播)算法原理的基础上,指出了RPROP算法具有收敛速度快、不容易陷入局部极小点、自适应能力强等优点,并分析了原因。将RPROP算法训练的多层前馈神经网络用于变压器油中溶解气体分析故障诊断,给出了网络模型,分析了隐层神经元数目对网络训练和诊断的影响。变压器油中溶解气体数据的训练和诊断表明,RPROP算法的收敛速度快于BP算法、加动量项BP算法,并且具有较高的诊断准确率,是一种有效的方法。  相似文献   

12.
电力变压器属电力系统中的重要设备,目前油中溶解气体分析(DGA)的三比值法是对变压器进行故障诊断的最方便、有效的方法之一.本文结合改良的三比值法,将贝叶斯网络方法引入大型变压器的故障诊断,提出了基于贝叶斯网络(BN)理论和变压器油中溶解气体分析方法的变压器智能故障诊断方法,并据此建立了变压器故障诊断模型.通过实例判断验证了本文方法的有效性.  相似文献   

13.
提出了一种基于混合多值编码的自适应遗传算法优化的小波神经网络变压器故障诊断方法.  相似文献   

14.
基于DGA的电力变压器故障诊断   总被引:3,自引:4,他引:3  
根据规程和生产经验总结出分析诊断变压器内部故障的流程图,介绍不同特征气体含量代表变压器处于何种运行状态以及相应的对策与措施。实践表明,基于DGA诊断变压器内部故障行之有效,但需全面掌握设备内部结构和运行状态,必要时增做电气试验,分析判断要结合历年试验数据和设备检修记录。  相似文献   

15.
《高压电器》2016,(11):163-168
人工神经网络技术已经在变压器的状态诊断得到应用,为了克服故障分析中BP神经网络存在的不足,提出了一种自适应混沌粒子群优化神经网络在变压器故障诊断的新方法。该算法通过进化速度因子和聚集因子调整惯性权重,并改进学习因子,引入混沌系统,构成混沌粒子群算法优化神经网络参数,有效地克服常规BP算法训练收敛速度慢、易陷入局部极小值等缺点。最后基于DGA对变压器故障实例分析仿真,对比常规变压器诊断方法结果表明,该算法能够提高诊断效率以及故障模式识别的准确性。  相似文献   

16.
针对传统变压器故障诊断方法的不足,介绍了多种智能诊断方法在基于油中溶解气体分析(dissolved gas-in-oil analysis, DGA)的变压器故障诊断中的应用,包括人工神经网络、模糊理论、专家系统、灰关联分析及其他智能方法。通过对这些智能诊断方法的分析,得出其优缺点及需要改进的方案,为研究人员选择最优油浸式电力变压器故障诊断方法提供参考。最后对基于DGA的变压器故障智能诊断方法进行了展望,并分析了未来的发展方向。  相似文献   

17.
针对单一的特征气体或特征气体比值作为DGA特征量无法全面反映变压器故障分类的问题,本文从混合DGA特征量中优选出一组DGA新特征组合为输入,建立改进磷虾群(Improved Krill Herd,IKH)算法优化支持向量机(Support vector machine,SVM)的变压器故障诊断模型进行故障诊断。将SVM的c和s与11种候选特征量进行二进制编码,利用遗传算法结合支持向量机对DGA特征量进行优选,得到一组最优DGA新特征组合;利用IKH算法对SVM的参数进行优化,同时结合交叉验证原理构建IKH算法优化SVM的变压器故障诊断模型。基于IEC TC 10的诊断结果表明:与DGA全数据、三比值特征量相比,新DGA特征组合的故障诊断准确率分别高出10.14%和30.2%;IKHSVM准确率也要高于标准SVM和GASVM(分别为73.87%、81.13%和86.27%),说明该方法能有效诊断变压器故障。  相似文献   

18.
基于LabVIEW的变压器油色谱分析故障诊断系统   总被引:3,自引:0,他引:3  
开发了一套基于LabVIEW的变压器油色谱故障诊断系统。故障诊断模块使用改良电协研法和基于RPROP算法的多层前馈神经网络,为了避免LabVIEW调试功能不够强大的问题,使用了动态链接库技术实现了该模块。实现了对变压器油色谱数据和故障诊断信息进行存储、查询、修改、删除及图形化显示,同时具有良好的帮助功能。通过对河北省石家庄电业局变压器进行故障诊断验证了系统的有效性。  相似文献   

19.
提出了一种基于免疫聚类算法的变压器DGA数据故障诊断方法,并通过试验证明了该方法的应用价值。  相似文献   

20.
基于多级支持向量机分类器的电力变压器故障识别   总被引:12,自引:0,他引:12  
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法.较好地解决了小样本、高维数、非线性等学习问题。提出了一种基于多级支持向量机分类器的电力变压器故障识别方法。该方法首先通过特殊数值处理过程,对色谱分析法检测到的特征气体含量进行数值预处理。提取出故障识别所需要的6个特征量。然后利用数值预处理后得到的数据样本分别对三级支持向量机进行训练和识别。并最后判断输出变压器所处的状态。测试结果表明,该方法具有三个优点:1)具有较强的鲁棒性。识别正确率极高;2)训练时间很短,实时性能好;3)不存在局部极小问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号