共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
沈绍辉 《可编程控制器与工厂自动化(PLC FA)》2017,(5):85-88
针对支持向量机核函数参数和惩罚因子的不同取值会影响到柴油机故障分类正确率的问题,提出利用差分进化算法对支持向量机相关参数进行选择优化,并在实际中通过柴油机故障诊断实验证明了该方法能够获得较高的故障分类正确率,而且运行时间较短,即说明该方法具有一定的实用性。 相似文献
3.
4.
基于最小二乘支持向量机的变压器故障诊断 总被引:1,自引:0,他引:1
介绍了一种基于最小二乘支持向量机(LS-SVM)的电力变压器故障诊断方法,将样本数据进行归一化处理,以绝缘油中特征气体种类及其含量为依据建立变压器故障诊断LS-SVM模型,对模型中的核参数σ与惩罚参数C进行优化,并将测试样本输入训练好的LS-SVM模型,得到诊断结果。实例结果分析表明,LS-SVM将原先的非线性问题转化为求解线性问题,即使在小训练样本的前提下,也能获得更为准确的诊断结果。 相似文献
5.
基于Morlet小波核多类支持向量机的故障诊断 总被引:3,自引:0,他引:3
故障诊断问题实质上是一个模式识别问题,即多分类问题.采用Morlet小波来构造支持向量机(Support Vector Machine, SVM)的核函数,Morlet小波核SVM比普通SVM具有更好的鲁棒性和更强的泛化能力.在一对一算法的基础上实现Morlet小波核多类支持向量机的故障诊断,并将此方法成功应用于电厂汽轮发电机组的故障诊断.实验仿真结果表明Morlet小波核多类SVM故障分类器比BP神经网络训练和测试速度快,且其分类精度在高斯噪声干扰下还保持100%,比BP神经网络高出11.8%.因此该方法能够快速而准确地对电厂汽轮发电机组的故障进行诊断,满足电力系统实时操作的要求. 相似文献
6.
介绍了基于粗糙集理论(RS)和支持向量机(SVM)的变压器故障诊断方法,使用这种方法可提高训练速度和诊断准确率。 相似文献
7.
8.
油中溶解气体分析是变压器绝缘故障诊断的重要方法。为了提高分类的准确度和可靠性,应用最小二乘支持向量机理论建立了变压器的分类模型。该模型以变压器油中5种主要特征气体作为输入量,以7种变压器状态作为输出量,选用了径向基核,使用了一对一的多分类算法,充分发挥了支持向量机具有较高泛化能力的优势。通过大量的实例分析,并将诊断结果与IEC三比值法、改良三比值法和BP神经网络的诊断结果相比较,表明基于径向基核的最小二乘支持向量机在变压器故障诊断中具有更高的准确率。 相似文献
9.
10.
基于支持向量机和交叉验证的变压器故障诊断 总被引:1,自引:0,他引:1
为及时监测变压器潜伏性故障和准确诊断故障,提出基于优化惩罚因子C参数的支持向量机算法(C-SVC:C-support vector classification)和交叉验证算法相结合的变压器故障诊断方法。该方法利用变压器在故障时产生的氢气、甲烷、乙烷、乙烯、乙炔的体积分数数据建立训练集和测试集。在训练集中,该方法能自动优化出(寻找最佳)支持向量机的核函数的参数γ和惩罚因子C,利用优化的参数对训练集进行训练,可得到最佳的支持向量机模型,并用该模型对测试集进行分类,从而诊断出变压器的故障类型。变压器故障诊断实例分析结果证明,该方法可行,有效,且具有较高的故障诊断准确率。 相似文献
11.
12.
13.
14.
基于DGA的电力变压器故障诊断 总被引:3,自引:4,他引:3
根据规程和生产经验总结出分析诊断变压器内部故障的流程图,介绍不同特征气体含量代表变压器处于何种运行状态以及相应的对策与措施。实践表明,基于DGA诊断变压器内部故障行之有效,但需全面掌握设备内部结构和运行状态,必要时增做电气试验,分析判断要结合历年试验数据和设备检修记录。 相似文献
15.
16.
17.
针对单一的特征气体或特征气体比值作为DGA特征量无法全面反映变压器故障分类的问题,本文从混合DGA特征量中优选出一组DGA新特征组合为输入,建立改进磷虾群(Improved Krill Herd,IKH)算法优化支持向量机(Support vector machine,SVM)的变压器故障诊断模型进行故障诊断。将SVM的c和s与11种候选特征量进行二进制编码,利用遗传算法结合支持向量机对DGA特征量进行优选,得到一组最优DGA新特征组合;利用IKH算法对SVM的参数进行优化,同时结合交叉验证原理构建IKH算法优化SVM的变压器故障诊断模型。基于IEC TC 10的诊断结果表明:与DGA全数据、三比值特征量相比,新DGA特征组合的故障诊断准确率分别高出10.14%和30.2%;IKHSVM准确率也要高于标准SVM和GASVM(分别为73.87%、81.13%和86.27%),说明该方法能有效诊断变压器故障。 相似文献
18.
19.
20.
基于多级支持向量机分类器的电力变压器故障识别 总被引:12,自引:0,他引:12
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法.较好地解决了小样本、高维数、非线性等学习问题。提出了一种基于多级支持向量机分类器的电力变压器故障识别方法。该方法首先通过特殊数值处理过程,对色谱分析法检测到的特征气体含量进行数值预处理。提取出故障识别所需要的6个特征量。然后利用数值预处理后得到的数据样本分别对三级支持向量机进行训练和识别。并最后判断输出变压器所处的状态。测试结果表明,该方法具有三个优点:1)具有较强的鲁棒性。识别正确率极高;2)训练时间很短,实时性能好;3)不存在局部极小问题。 相似文献