首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 1-V low-power high-speed dynamic-loading frequency divider is proposed using novel D flip-flops with a common-gate topology and with a single clock phase. A simple and accurate small-signal analysis model is provided to estimate the operating frequencies of the divider. Implemented in a standard digital 0.35-/spl mu/m CMOS process and at 1-V supply, the proposed frequency divider measures a maximum operating frequency up to 5.2 GHz with a power consumption of 2.5 mW.  相似文献   

2.
We have developed a complete single-chip GPS receiver using 0.18-/spl mu/m CMOS to meet several important requirements, such as small size, low power, low cost, and high sensitivity for mobile GPS applications. This is the first case in which a radio has been successfully combined with a baseband processor, such as SoC, in a GPS receiver. The GPS chip, with a total size of 6.3 mm /spl times/ 6.3 mm, contains a 2.3 mm /spl times/ 2.0 mm radio part, including RF front end, phase-locked loops, IF functions, and 500 K gates of baseband logic, including mask ROM, SRAM, and dual port SRAM . It is fabricated using 0.18-/spl mu/m CMOS technology with a MIM capacitor and operates from a 1.6-2.0-V power supply. Experimental results show a very low power consumption of, typically, 57 mW for a fully functional chip including baseband, and a high sensitivity of -152dBm. Through countermeasures against substrate coupling noise from the digital part, the high sensitivity was successfully achieved without any external low-noise amplifier.  相似文献   

3.
A compact ultra-broadband MMIC-compatible uniplanar balun has been developed using offset air-gap coupler. The offset air-gap coupler presents tight coupling and low conductor loss, and thus allows the balun to show low loss at mm-wave frequencies. The measured insertion loss was less than 2 dB from 26 to 55 GHz, and amplitude and phase imbalance was less than /spl plusmn/1dB and 5/spl deg/, respectively over a wide frequency range from 27 to 69 GHz.  相似文献   

4.
A low-noise amplifier (LNA) uses low-loss monolithic transformer feedback to neutralize the gate-drain overlap capacitance of a field-effect transistor (FET). A differential implementation in 0.18-/spl mu/m CMOS technology, designed for 5-GHz wireless local-area networks (LANs), achieves a measured power gain of 14.2 dB, noise figure (NF, 50 /spl Omega/) of 0.9 dB, and third-order input intercept point (IIP3) of +0.9 dBm at 5.75 GHz, while consuming 16 mW from a 1-V supply. The feedback design is benchmarked to a 5.75-GHz cascode LNA fabricated in the same technology that realizes 14.1-dB gain, 1.8-dB NF, and IIP3 of +4.2 dBm, while dissipating 21.6 mW at 1.8 V.  相似文献   

5.
A dual band, fully integrated, low phase-noise and low-power LC voltage-controlled oscillator (VCO) operating at the 2.4-GHz industrial scientific and medical band and 5.15-GHz unlicensed national information infrastructure band has been demonstrated in an 0.18-/spl mu/m CMOS process. At 1.8-V power supply voltage, the power dissipation is only 5.4mW for a 2.4-GHz band and 8mW for a 5.15-GHz band. The proposed VCO features phase-noise of -135dBc/Hz at 3-MHz offset frequency away from the carrier frequency of 2.74GHz and -126dBc/Hz at 3-MHz offset frequency away from 5.49GHz. The oscillator is tuned from 2.2 to 2.85GHz in the low band (2.4-GHz band) and from 4.4 to 5.7GHz in the high band (5.15-GHz band).  相似文献   

6.
This paper presents the design of three- and nine-stage voltage-controlled ring oscillators that were fabricated in TSMC 0.18-/spl mu/m CMOS technology with oscillation frequencies up to 5.9 GHz. The circuits use a multiple-pass loop architecture and delay stages with cross-coupled FETs to aid in the switching speed and to improve the noise parameters. Measurements show that the oscillators have linear frequency-voltage characteristics over a wide tuning range, with the three- and nine-stage rings resulting in frequency ranges of 5.16-5.93 GHz and 1.1-1.86 GHz, respectively. The measured phase noise of the nine-stage ring oscillator was -105.5 dBc/Hz at a 1-MHz offset from a 1.81-GHz center frequency, whereas the value for the three-stage ring oscillator was simulated to be -99.5 dBc/Hz at a 1-MHz offset from a 5.79-GHz center frequency.  相似文献   

7.
An analysis of regenerative dividers predicts the required phase shift or selectivity for proper operation. A divider topology is introduced that employs resonance techniques by means of on-chip spiral inductors to tune out the device capacitances. Configured as two cascaded /spl divide/2 stages, the circuit achieves a frequency range of 2.3 GHz at 40 GHz while consuming 31 mW from a 2.5-V supply.  相似文献   

8.
This letter presents a fully integrated distributed amplifier in a standard 0.18-/spl mu/m CMOS technology. By employing a nonuniform architecture for the synthetic transmission lines, the proposed distributed amplifier exhibits enhanced performance in terms of gain and bandwidth. Drawing a dc current of 45mA from a 2.2-V supply voltage, the fabricated circuit exhibits 9.5-dB pass-band gain with a bandwidth of 32GHz while maintaining good input and output return losses over the entire frequency band. With a compact layout technique, the chip size of the distributed amplifier including the testing pads is 940/spl times/860/spl mu/m/sup 2/.  相似文献   

9.
A two-stage self-biased cascode power amplifier in 0.18-/spl mu/m CMOS process for Class-1 Bluetooth application is presented. The power amplifier provides 23-dBm output power with a power-added efficiency (PAE) of 42% at 2.4 GHz. It has a small signal gain of 38 dB and a large signal gain of 31 dB at saturation. This is the highest gain reported for a two-stage design in CMOS at the 0.8-2.4-GHz frequency range. A novel self-biasing and bootstrapping technique is presented that relaxes the restriction due to hot carrier degradation in power amplifiers and alleviates the need to use thick-oxide transistors that have poor RF performance compared with the standard transistors available in the same process. The power amplifier shows no performance degradation after ten days of continuous operation under maximum output power at 2.4-V supply. It is demonstrated that a sliding bias technique can be used to both significantly improve the PAE at mid-power range and linearize the power amplifier. By using the sliding bias technique, the PAE at 16 dBm is increased from 6% to 19%, and the gain variation over the entire power range is reduced from 7 to 0.6 dB.  相似文献   

10.
This paper presents an integrable RF sampling receiver front-end architecture, based on a switched-capacitor (SC) RF sampling downconversion (RFSD) filter, for WLAN applications in a 2.4-GHz band. The RFSD filter test chip is fabricated in a 0.18-/spl mu/m CMOS technology and the measurement results show a successful realization of RF sampling, quadrature downconversion, tunable anti-alias filtering, downconversion to baseband, and decimation of the sampling rate. By changing the input sampling rate, the RFSD filter can be tuned to different RF channels. A maximum input sampling rate of 1072 MS/s has been achieved. A single-phase clock is used for the quadrature downconversion and the bandpass operation is realized by a 23-tap FIR filter. The RFSD filter has an IIP/sub 3/ of +5.5 dBm, a gain of -1 dB, and more than 17 dB rejection of alias bands. The measured image rejection is 59 dB and the sampling clock jitter is 0.64 ps. The test chip consumes 47 mW in the analog part and 40 mW in the digital part. It occupies an area of 1 mm/sup 2/.  相似文献   

11.
A 24-GHz low-noise amplifier (LNA) was designed and fabricated in a standard 0.18-/spl mu/m CMOS technology. The LNA chip achieves a peak gain of 13.1 dB at 24 GHz and a minimum noise figure of 3.9 dB at 24.3 GHz. The supply voltage and supply current are 1 V and 14 mA, respectively. To the author's knowledge, this LNA demonstrates the lowest noise figure among the reported LNAs in standard CMOS processes above 20 GHz.  相似文献   

12.
A 24-GHz +14.5-dBm fully integrated power amplifier with on-chip 50-/spl Omega/ input and output matching is demonstrated in 0.18-/spl mu/m CMOS. The use of substrate-shielded coplanar waveguide structures for matching networks results in low passive loss and small die size. Simple circuit techniques based on stability criteria derived result in an unconditionally stable amplifier. The power amplifier achieves a power gain of 7 dB and a maximum single-ended output power of +14.5-dBm with a 3-dB bandwidth of 3.1 GHz, while drawing 100 mA from a 2.8-V supply. The chip area is 1.26 mm/sup 2/.  相似文献   

13.
The authors present two four-stage traveling-wave amplifiers (TWA) fabricated in a 0.18-/spl mu/m CMOS process. A TWA with an internal drain bias network achieved a gain of 5 dB out to 10 GHz, and another TWA without an on-chip bias network achieved a gain of 8 dB out to 10 GHz. These are the highest frequency CMOS TWAs known to the authors.  相似文献   

14.
A 20-GHz phase-locked loop with 4.9 ps/sub pp//0.65 ps/sub rms/ jitter and -113.5 dBc/Hz phase noise at 10-MHz offset is presented. A half-duty sampled-feedforward loop filter that simply replaces the resistor with a switch and an inverter suppresses the reference spur down to -44.0 dBc. A design iteration procedure is outlined that minimizes the phase noise of a negative-g/sub m/ oscillator with a coupled microstrip resonator. Static frequency dividers made of pulsed latches operate faster than those made of flip-flops and achieve near 2:1 frequency range. The phase-locked loop fabricated in a 0.13-/spl mu/m CMOS operates from 17.6 to 19.4GHz and dissipates 480mW.  相似文献   

15.
This paper describes the results of an implementation of a Bluetooth radio in a 0.18-/spl mu/m CMOS process. A low-IF image-reject conversion architecture is used for the receiver. The transmitter uses direct IQ-upconversion. The VCO runs at 4.8-5.0 GHz, thus facilitating the generation of 0/spl deg/ and 90/spl deg/ signals for both the receiver and transmitter. By using an inductor-less LNA and the extensive use of mismatch simulations, the smallest silicon area for a Bluetooth radio implementation so far can be reached: 5.5 mm/sup 2/. The transceiver consumes 30 mA in receive mode and 35 mA in transmit mode from a 2.5 to 3.0-V power supply. As the radio operates on the same die as baseband and SW, the crosstalk-on-silicon is an important issue. This crosstalk problem was taken into consideration from the start of the project. Sensitivity was measured at -82 dBm.  相似文献   

16.
A 2-GHz direct-conversion receiver for wide-band code division multiple access (WCDMA) is presented. It includes two low-noise amplifiers (LNAs), an I/Q demodulator, and two sixth-order baseband channel select filters with programmable gain. Quadrature local oscillator (LO) signals are generated on chip in a frequency divider flip-flop. An external interstage filter between the LNAs rejects transmitter leakage to relax demodulator linearity requirements. A low-voltage demodulator topology improves linearity as well as demodulator output pole accuracy. The active-RC baseband filter uses a programmable servo loop for offset compensation and provides an adjacent channel rejection of 39 dB. Programmable gain over 71-dB range in 1-dB steps is merged with the filter to maximize dynamic range. An automatic on-chip frequency calibration scheme provides better than 1.5% corner frequency accuracy. The receiver is integrated in a 0.13-/spl mu/m CMOS process with metal-insulator-metal (MIM) capacitors. Measured receiver performance includes a 6.5-dB noise figure, IIP2 of +27 dBm, and IIP3 of -8.6 dBm. Power consumption is 45 mW.  相似文献   

17.
An ultra-wideband mixer using standard complementary metal oxide semiconductor (CMOS) technology was first proposed in this paper. This broadband mixer achieves measured conversion gain of 11 /spl plusmn/ 1.5 dB with a bandwidth of 0.3 to 25 GHz. The mixer was fabricated in a commercial 0.18-/spl mu/m CMOS technology and demonstrated the highest frequency and bandwidth of operation. It also presented better gain-bandwidth-product performance compared with that of GaAs-based HBT technologies. The chip area is 0.8 /spl times/ 1 mm/sup 2/.  相似文献   

18.
This brief describes the design of a frequency synthesizer for 2.3/4.6-GHz wireless applications in a 0.35-/spl mu/m digital CMOS process. This synthesizer provides dual-band output signals by means of frequency doubling techniques. Output frequency of the proposed synthesizer ranges from 1.87-2.3 GHz, and 3.74-4.6GHz. This chip consumes a total power of 80 mW from a single 2-V supply, including 45 mW for dual-band output buffers. Core size is 2200 /spl mu/m/spl times/1600 /spl mu/m.  相似文献   

19.
A frequency synthesizer incorporating one single-sideband (SSB) mixer generates seven bands of clock distributed from 3 to 8GHz with 1-ns switching time. An efficient frequency synthesizing technique producing balanced bands around one center frequency is employed, and the SSB mixer uses double degeneration topology to increase the linearity. Fabricated in 0.18-/spl mu/m CMOS technology, this circuit achieves a sideband rejection of 37 dB while consuming 48 mW from a 2.2-V supply.  相似文献   

20.
The paper describes a bioluminescence detection lab-on-chip consisting of a fiber-optic faceplate with immobilized luminescent reporters/probes that is directly coupled to an optical detection and processing CMOS system-on-chip (SoC) fabricated in a 0.18-/spl mu/m process. The lab-on-chip is customized for such applications as determining gene expression using reporter gene assays, determining intracellular ATP, and sequencing DNA. The CMOS detection SoC integrates an 8 /spl times/ 16 pixel array having the same pitch as the assay site array, a 128-channel 13-bit ADC, and column-level DSP, and is fabricated in a 0.18-/spl mu/m image sensor process. The chip is capable of detecting emission rates below 10/sup -6/ lux over 30 s of integration time at room temperature. In addition to directly coupling and matching the assay site array to the photodetector array, this low light detection is achieved by a number of techniques, including the use of very low dark current photodetectors, low-noise differential circuits, high-resolution analog-to-digital conversion, background subtraction, correlated multiple sampling, and multiple digitizations and averaging to reduce read noise. Electrical and optical characterization results as well as preliminary biological testing results are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号