首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-type CVD-Si3N4 plates (up to 1.1 mm thick) have been prepared by adding TiCl4 vapor to the system SiCl4-NH3-H2 at deposition temperatures of 1350° to 1450°C, while α-type or amorphous CVD-Si3N4 was obtained without TiCl4 vapor at the same deposition temperature. Three to four wt % 777V was included in the β-type CVD-Si3N4 matrix. The density, preferred orientation, and lattice parameters of β-type CVD-Si3N4 were examined.  相似文献   

2.
The development of crystalline phases in lithium oxynitride glass-ceramics was examined, with particular emphasis placed on the effect of the nitrogen source (AlN or Si3N4) on the formation and stability of a β-quartz solid-solution ( ss ) phase. Oxynitride glasses derived from the Li-Si-Al-O-N system were heat-treated at temperatures up to 1200°C to yield glass-ceramics in which β-quartz( ss ) and β-spodumene( ss ) of approximate composition Li2OAl2O34SiO2 formed as major phases and in which X-phase (Si3Al6O12N2) and silicon oxynitride (Si2N2O) were present as minor phases. The nitrogen-containing β-quartz( ss ) phase that was prepared with AlN was stable at 1200°C; however, the use of Si3N4 as the nitrogen source was significantly less effective in promoting such thermal stabilization. Lattice parameter measurements revealed that AlN and Si3N4 had different effects on the crystalline structures, and it was proposed that the enhanced thermal stability of the β-quartz( ss ) phase that was prepared with AlN was due to both the replacement of oxygen by nitrogen and the positioning of excess Al3+ ions into interstitial sites within the β-quartz( ss ) crystal lattice.  相似文献   

3.
β-Si3N4 ceramics sintered with Yb2O3 and ZrO2 were fabricated by gas-pressure sintering at 1950°C for 16 h changing the ratio of "fine" and "coarse" high-purity β-Si3N4 raw powders, and their microstructures were quantitatively evaluated. It was found that the amount of large grains (greater than a few tens of micrometers) could be drastically reduced by mixing a small amount of "coarse" powder with a "fine" one, while maintaining high thermal conductivity (>140 W·(m·K)−1). Thus, this work demonstrates that it is possible for β-Si3N4 ceramics to achieve high thermal conductivity and high strength simultaneously by optimizing the particle size distribution of raw powder.  相似文献   

4.
The development of microstructure in hot-pressed SiaN4 was studiehd for a typical Si3N4 powder with and without BeSiN2 as a densification aid. The effect of hot-pressing temperature on density, α- to β-Si3N4 conversion and specific surface area showed that BeSiN2 appears to increase the mobility of the system by enhancing densification, α- to β-Si3N4 transformation, and grain growth at temperatures between 1450° and 1800°. These processes appear to occur in the presence of a liquid phase.  相似文献   

5.
A two-step sintering process is described in which the first step suppresses densification while allowing the α-to-β phase transformation to proceed, and the second step, at higher temperatures, promotes densification and grain growth. This process allows one to obtain a bimodal microstructure in Si3N4 without using β-Si3N4 seed crystals. A carbothermal reduction process was used in the first step to modify the densification and transformation rates of the compacts consisting of Si3N4, Y2O3, Al2O3, and a carbon mixture. The carbothermal reduction process reduces the oxygen:nitrogen ratio of the Y-Si-Al-O-N glass that forms, which leads to the precipitation of crystalline oxynitride phases, in particular, the apatite phase. Precipitation of the apatite phase reduces the amount of liquid phase and retards the densification process up to 1750°C; however, the α-to-β phase transformation is not hindered. This results in the distribution of large β-nuclei in a porous fine-grained β-Si3N4 matrix. Above 1750°C, liquid formed by the melting of apatite resulted in a rapid increase in densification rates, and the larger β-nuclei also grew rapidly, which promoted the development of a bimodal microstructure.  相似文献   

6.
Starting from Si powder, NaN3 and different additives such as N -aminothiourea, iodine, or both, Si3N4 nanomaterials were synthesized through the nitridation of silicon powder in autoclaves at 60°–190°C. As the additive was only N -aminothiourea, β-Si3N4 nanorods and α-Si3N4 nanoparticles were prepared at 170°C. If the additive was only iodine, α-Si3N4 dendrites with β-Si3N4 nanorods were obtained at 190°C. However, when both N -aminothiourea and iodine were added to the system of Si and NaN3, the products composed of β-Si3N4 nanorods and α, β-Si3N4 nanoparticles could be prepared at 60°C.  相似文献   

7.
Electrical conductivity was measured from 850° to 1400°C for β-sialon and pure X phase as well as for the sintered system Si3N4-Al2O3, containing β-sialon, X phase, β-Si3N4, and glassy phase. Ionic conductivity was measured at >1000°C. The charge carriers were identified by electrolysis. The results showed that pure β-sialon is ionically conducting because of Si4+ migration for the temperature range studied. Pure X phase shows ionic conduction by Si4+ above 1000°; below 1000°C, it shows electronic conduction because of impurities. The conductivity of the sintered system Si3N4-Al2O3 containing β-sialon, β-Si3N4 X phase, and glassy phase changes as the relative quantities of β -sialon and X phase change. The apparent activation energies for the ionic and electronic conductivities are 45 and 20 kcal/mol, respectively.  相似文献   

8.
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°–1600°C for 3–12 min, using α-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%α-Si3N4 phase left in the sintered material. α-Si3N4 was completely transformed to β-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K)−1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate β-Si3N4 ceramics with high thermal conductivity when appropriate additives are used.  相似文献   

9.
Silicon nitride nanowires or nanorods have been synthesized from SiCl4, NaN3, and metallic Mg at temperatures ranging from 200° to 300°C. X-ray powder diffraction patterns indicated that the as-obtained products were mainly β-Si3N4. Scanning electron microscope and high-resolution transmission electronic microscopy showed that the samples mostly consisted of Si3N4 nanowires or nanorods. As metallic iron powder was used, α-Si3N4 was mainly formed at 250°C.  相似文献   

10.
Composite ceramic materials based on Si3N4 and ZrO2 stabilized by 3 mol% Y2O3 have been formed using aluminum isopropoxide as a precursor for the Al2O3 sintering aid. Densification was carred out by hot-pressing at temperatures in the range 1650° to 1800°C, and the resulting micro-structures were related to mechanical properties as well as to oxidation behavior at 1200°C. Densification at the higher temperatures resulted in a fibrous morphology of the Si3N4 matrix with consequent high room-temperature toughness and strength. Decomposition of the ZrO2 grains below the oxidized surface during oxidation introduced radial stresses in the subscalar region, and from the oxidation experiments it is suggested that the ZrO2 incorporated some N during densification.  相似文献   

11.
Dense, ZrO2-dispersed Si3N4 composites without additives were fabricated at 180 MPa and ∼1850° to 1900°C for l h by hot isostatic pressing using a glass-encapsulation method; the densities reached >96% of theoretical. The dispersion of 20 wt% of 2.5YZrO2 (2.5 mol% Y2O3) in Si3N4 was advantageous to increase the room-temperature fracture toughness (∼7.5 MPa˙m1/2) without degradation of hardness (∼15 GPa) because of the high retention of tetragonal ZrO2. The dependence of fracture toughness of Si3N4–2.5YZrO2 on ZrO2 content can be related to the formation of zirconium oxynitride because of the reaction between ZrO2 and Si3N4 matrix in hot isostatic pressing.  相似文献   

12.
The 1780°C isothermal section of the reciprocal quasiternary system Si3N4-SiO2-BeO-Be3N2 was investigated by the X-ray analysis of hot-pressed samples. The equilibrium relations shown involve previously known compounds and 8 newly found compounds: Be6Si3N8, Be11Si5N14, Be5Si2N6, Be9Si3N10, Be8SiO4N4, Be6O3N2, Be8O5N2, and Be9O6N2. Large solid solubility occurs in β-Si3N4, BeSiN2, Be9Si3N10, Be4SiN4, and β-Be3N2. Solid solubility in β-Si3N4 extends toward Be2SiO4 and decreases with increasing temperature from 19 mol% at 1770°C to 11.5 mol% Be2SiO4 at 1880°C. A 4-phase isotherm, liquid +β-Si3N4 ( ss )Si2ON2+ BeO, exists at 1770°C.  相似文献   

13.
The kinetics of anisotropic β-Si3N4 grain growth in silicon nitride ceramics were studied. Specimens were sintered at temperatures ranging from 1600° to 1900°C under 10 atm of nitrogen pressure for various lengths of time. The results demonstrate that the grain growth behavior of β-Si3N4 grains follows the empirical growth law Dn– D0n = kt , with the exponents equaling 3 and 5 for length [001] and width [210] directions, respectively. Activation energies for grain growth were 686 kJ/mol for length and 772 kJ/mol for width. These differences in growth rate constants and exponents for length and width directions are responsible for the anisotropy of β-Si3N4 growth during isothermal grain growth. The resultant aspect ratio of these elongated grains increases with sintering temperature and time.  相似文献   

14.
Silicon nitride (Si3N4) ceramics, prepared with Y2O3 and Al2O3 sintering additives, have been densified in air at temperatures of up to 1750°C using a conventional MoSi2 element furnace. At the highest sintering temperatures, densities in excess of 98% of theoretical have been achieved for materials prepared with a combined sintering addition of 12 wt% Y2O3 and 3 wt% Al2O3. Densification is accompanied by a small weight gain (typically <1–2 wt%), because of limited passive oxidation of the sample. Complete α- to β-Si3N4 transformation can be achieved at temperatures above 1650°C, although a low volume fraction of Si2N2O is also observed to form below 1750°C. Partial crystallization of the residual grain-boundary glassy phase was also apparent, with β-Y2Si2O7 being noted in the majority of samples. The microstructures of the sintered materials exhibited typical β-Si3N4 elongated grain morphologies, indicating potential for low-cost processing of in situ toughened Si3N4-based ceramics.  相似文献   

15.
The in situ β-Si3N4/α'-SiAlON composite was studied along the Si3N4–Y2O3: 9 AlN composition line. This two phase composite was fully densified at 1780°C by hot pressing Densification curves and phase developments of the β-Si3N4/α'-SiAlON composite were found to vary with composition. Because of the cooperative formation of α'-Si AlON and β-Si3N4 during its phase development, this composite had equiaxed α'-SiAlON (∼0.2 μm) and elongated β-Si3N4 fine grains. The optimum mechanical properties of this two-phase composite were in the sample with 30–40%α', which had a flexural strength of 1100 MPa at 25°C 800 MPa at 1400°C in air, and a fracture toughness 6 Mpa·m1/2. α'-SiAlON grains were equiaxed under a sintering condition at 1780°C or lower temperatures. Morphologies of the α°-SiAlON grains were affected by the sintering conditions.  相似文献   

16.
Elongated β'-SiAlON grains grown from several finegrained Ym/3Si12(m+n)Alm+nOnN16–r compositions with α-Si3N4, AlN, Al2O3, and Y2O3 starting materials have been examined. These grains have large aspect ratios and are oriented along the [0001] axis. TEM structural and chemical analysis suggests that they are nucleated from various seed crystals, which can be α-Si3N4, β-Si3N4, or other β'-SiAlON. The β'-SiAlON seed and the initial precipitation on β-Si3N4 show a higher content of Al and O, indicating that a large transient supersaturation of Al and O in the liquid is instrumental for β'-SiAlON formation, whereas subsequent growth proceeds under a much lower driving force. The misfit between phases is accommodated by interfacial dislocations ( c -type and a -type). Fully grown β'-SiAlON grains usually contain several variants independently nucleated from the same seed. In particular, the two alternative α/β phase-matching possibilities result in two [0001] growth habits separated by a twin boundary.  相似文献   

17.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

18.
The effects of trace O2 levels on the nitridation of compacts made from silane-derived Si powders were studied in N2 atmospheres, with oxygen levels of either 5 ppm or 10 ppb (approximately). The nitriding kinetics were studied by thermogravimetric analysis as a function of temperature (1100–1200°C) and heating rate (5°C/min and 100°C/min). Reducing the O2 level in the nitriding gas enhanced conversion to Si3N4 at lower temperatures, reduced the composition variations within the samples, and decreased the α/β ratios. The results suggest that nucleation and rapid growth of Si3N4 at relatively low temperatures are possible only when the oxygen partial pressure in the system is below the threshold value for passive oxidation.  相似文献   

19.
The existence of compounds between Si3N4-CeO2 and Si3N4-Ce2O3 was investigated for firing temperatures of 1600° to 1700°C. The two new monoclinic compounds found were Ce2O3·2Si3N4 with lattice parameters a = 16.288, b = 4.848, and c =7.853 Å and β=91.54° and Ce4Si2O7N2 with lattice parameters a = 10.360, b = 10.865, and c =3.974 Å and β=90.33°. Cerium orthosilicate (Ce 4.67 (SiO4)3O) is present during firing as a glassy intermediate phase which promotes sintering and densification and then reacts with silicon nitride to form cerium silicon oxynitrde (CeSiO2N).  相似文献   

20.
A detailed investigation using X-ray diffraction and other supportive techniques was performed on a preceramic polysilazane to study its pyrolytic conversion to silicon nitride (Si3N4). Analytical techniques were developed to determine the volumetric degree of crystallinity with respect to pyrolysis temperature. Quantitative data for crystallite size, phase composition, and degree of crystallinity versus pyrolysis temperature and atmosphere (nitrogen and ammonia) are presented. Pyrolytic products produced under nitrogen and ammonia atmospheres consist of microcrystals of silicon, α-Si3N4, and β-Si3N4. Under both atmospheres, a majority of the char is crystalline at ≅1270°C, and the entire char is crystallized at 1400°C. Pyrolysis under an ammonia atmosphere produces nearly stoichiometric Si3N4, while pyrolysis under nitrogen produces silicon-rich material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号