首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a theoretical approach to calculating optical properties of carbonaceous soot in the long-wavelength limit. Our method is based on geometrical renormalization of clusters; it avoids both the inaccuracy of the dipole approximation in its pure form and the numerical complexity of rigorous direct methods of solving the EM boundary problem. The results are verified by comparison with the experimental measurements for specific extinction of diesel soot in the spectral region from 0.488 microm to 0.857 cm that were performed by Bruce et al. [Appl. Opt. 30, 1537 (1991)]. The theory leads to analytical expressions that are applicable to different soots, with various geometrical properties and optical constants. We show that the functional form of the long-wavelength asymptote of the specific extinction can depend critically on a parameter characterizing the sample geometry, and we identify the critical value of this parameter.  相似文献   

2.
The theory of the discrete-dipole approximation (DDA) for light scattering is extended to allow for the calculation of radiation forces on each dipole in the DDA model. Starting with the theory of Draine and Weingartner [Astrophys. J. 470, 551 (1996)] we derive an expression for the radiation force on each dipole. These expressions are reformulated into discrete convolutions, allowing for an efficient, O(N logN) evaluation of the forces. The total radiation pressure on the particle is obtained by summation of the individual forces. The theory is tested on spherical particles. The resulting accumulated radiation forces are compared with Mie theory. The accuracy is within the order of a few percent, i.e., comparable with that obtained for extinction cross sections calculated with the DDA.  相似文献   

3.
Ram RS  Bernath PF 《Applied optics》1996,35(16):2879-2883
The emission spectrum of the A(1)II-X(1)Σ(+) system of AIH, excited in a hollow-cathode discharge lamp, has been observed at high resolution with a Fourier-transform spectrometer. The rotational lines in the 0-0 and the 1-1 bands have been measured with a precision of ±0.001 cm(-1). The present measurements provide a considerable improvement overthe previous data of Zeeman and Ritter [Can. J. Phys. 32, 555 (1954)]. The present data, combined with the previous high-resolution measurements of the 1-0 vibration-rotation band by White et al. [J. Chem. Phys. 99, 8371 (1993)] and the J = 1-0 pure rotational line of Goto and Saito [Astrophys. J. 452, L147 (1995)] have been used to determine improved molecular constants for the A(1)!! state.  相似文献   

4.
Assumptions of theoretical laser-induced incandescence (LII) models along with possible effects of high-intensity laser light on soot aggregates and the constituent primary particles are discussed in relation to selection of excitation laser fluence. Ex situ visualization of laser-heated soot by use of transmission electron microscopy reveals significant morphological changes (graphitization) induced by pulsed laser heating. Pulsed laser transmission measurements within a premixed laminar sooting flame suggest that soot vaporization occurs for laser fluences greater than 0.5 J/cm(2) at 1064 nm. Radial LII intensity profiles at different axial heights in a laminar ethylene gas jet diffusion flame reveal a wide range of signal levels depending on the laser fluence that is varied over an eight fold range. Results of double-pulse excitation experiments in which a second laser pulse heats in situ the same soot that was heated by a prior laser pulse are detailed. These two-pulse measurements suggest varying degrees of soot structural change for fluences below and above a vaporization threshold of 0.5 J/cm(2) at 1064 nm. Normalization of the radial-resolved LII signals based on integrated intensities, however, yields self-similar profiles. The self-similarity suggests robustness of LII for accurate relative measurement of soot volume fraction despite the morphological changes induced in the soot, variations in soot aggregate and primary particle size, and local gas temperature. Comparison of LII intensity profiles with soot volume fractions (f(v)) derived by light extinction validates LII for quantitative determination of f(v) upon calibration for laser fluences ranging from 0.09 to 0.73 J/cm(2).  相似文献   

5.
Xing ZF  Greenberg JM 《Applied optics》1994,33(24):5783-5795
The analyticity of the complex extinction efficiency is examined numerically in the size-parameter domain for homogeneous prolate and oblate spheroids and finite cylinders. The T-matrix code, which is the most efficient program available to date, is employed to calculate the individual particle-extinction efficiencies. Because of its computational limitations in the size-parameter range, a slightly modified Hilbert-transform algorithm is required to establish the analyticity numerically. The findings concerning analyticity that we reported for spheres (Astrophys. J. 399, 164-175, 1992) apply equally to these nonspherical particles.  相似文献   

6.
In the present study, the local characteristics of pressure drop and heat transfer are investigated experimentally for the condensation of pure refrigerant R134a in two kinds of 865 mm long multi-port extruded tubes having eight channels in 1.11 mm hydraulic diameter and 19 channels in 0.80 mm hydraulic diameter. The pressure drop is measured at an interval of 191 mm through small pressure measuring ports. The local heat transfer rate is measured in every subsection of 75 mm in effective cooling length using heat flux sensors. It is found that the experimental data of frictional pressure drop agree with the correlation of Mishima and Hibiki [Trans. JMSE (B) 61 (1995) 99], while the correlations of Chisholm and Laird [Trans. ASME 80 (1958) 227], Soliman et al. [Trans. ASME, Ser. C 90 (1998) 267], and Haraguchi et al. [Trans. JSME (B) 60 (1994) 239], overpredict. As a trial, the data of local heat transfer coefficient are also compared with correlations of Moser et al. [J. Heat Transfer 120 (1998) 410] and Haraguchi et al. [Trans. JSME (B) 60 (1994) 245]. The data of high mass velocity agree with the correlation of Moser et al., while those of low mass velocity show different trends. The correlation of Haraguchi et al. shows the trend similar to the data when the shear stress in their correlation is estimated using the correlation of Mishima and Hibiki.  相似文献   

7.
Impurities enter a snowpack as a result of fallout or scavenging by falling snow crystals. Albedos and flux extinction coefficients of soot-contaminated snowcovers are studied using a two-stream approximation of the radiative transfer equation. The effect of soot is calculated by two methods: independent scattering by ice grains and impurities, and the average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased relative to that for pure snow in the visible region, while the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. We find that soot contamination provides qualitative explanation for several snow observations.  相似文献   

8.
Orientation-averaged light-extinction characteristics of compound sulfate-carbon-soot particles have been analyzed with a discrete-dipole algorithm (DDSCAT code) for r1/r2 (ratio of primary-particle radius to secondary-particle radius) in the range 7 to 1 and for wavelengths from 0.4 to 0.8 microm. It was found that compound particles above a particle radius of approximately 0.2 microm exhibit light-extinction characteristics that closely match those of a pure sulfate particle. The shielding of the carbon particle by the primary particle apparently reduces the absorption effect of the soot particle over the range of all possible orientations. In light of the fact that soot particles tend to be small in comparison with host sulfate particles, the light-extinction characteristics of compound particles are dictated by the optical properties of the host particles. This result has been applied for aerosol aggregates with log-normal size distributions. For r1/r2 > or = 2 the aggregate extinction coefficient of a group of compound particles remains within 12% of that of a group consisting only of sulfate particles. This allows for effective calculation of the overall aerosol light extinction on the basis of the optical and geometrical properties of the constituent particles without having to include a compound-geometry effect.  相似文献   

9.
The aerosol extinction measurements in the ultraviolet and visible wavelengths by the balloonborne spectrometer Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON) show that aerosols are present in the middle stratosphere, above 25-km altitude. These observations are confirmed by the extinction measurements performed by a solar occultation radiometer. The balloonborne Laboratoire de Météorologie Dynamique (LMD) counter instrument also confirms the presence of aerosol around 30-km altitude, with an unrealistic excess of micronic particles assuming that only liquid sulfate aerosols are present. An unexpected spectral structure around 640-nm observed by SALOMON is also detectable in extinction measurements by the satellite instrument Stratospheric Aerosols and Gas Experiment III. This set of measurements could indicate that solid aerosols were detected at these altitude ranges. The amount of soot detected up to now in the lower stratosphere is too low to explain these measurements. Thus, the presence of interplanetary dust grains and micrometeorites may need to be invoked. Moreover, it seems that these grains fill the stratosphere in stratified layers.  相似文献   

10.
The similarity of the absorption spectra of gamma-ray burst (GRB) sources or afterglows with the absorption spectra of quasars (QSOs) suggests that QSOs and GRB sources are very closely related. Since most people believe that the redshifts of QSOs are of cosmological origin, it is natural to assume that GRBs or their afterglows also have cosmological redshifts. For some years a few of us have argued that there is much optical evidence suggesting a very different model for QSOs, in which their redshifts have a non-cosmological origin, and are ejected from low-redshift active galaxies. In this paper I extend these ideas to GRBs. In 2003, Burbidge (Burbidge 2003 Astrophys. J. 183, 112-120) showed that the redshift periodicity in the spectra of QSOs appears in the redshift of GRBs. This in turn means that both the QSOs and the GRB sources are similar objects ejected from comparatively low-redshift active galaxies. It is now clear that many of the GRBs of low redshift do appear in, or very near, active galaxies.A new and powerful result supporting this hypothesis has been produced by Prochter et al. (Prochter et al. 2006 Astrophys. J. Lett. 648, L93-L96). They show that in a survey for strong MgII absorption systems along the sightlines to long-duration GRBs, nearly every sightline shows at least one absorber. If the absorbers are intervening clouds or galaxies, only a small fraction should show absorption of this kind. The number found by Prochter et al. is four times higher than that normally found for the MgII absorption spectra of QSOs. They believe that this result is inconsistent with the intervening hypothesis and would require a statistical fluctuation greater than 99.1% probability.This is what we expect if the absorption is intrinsic to the GRBs and the redshifts are not associated with their distances. In this case, the absorption must be associated with gas ejected from the QSO. This in turn implies that the GRBs actually originate in comparatively low-redshift active galaxies and are ejected in the same way as are the QSOs. This relates these phenomena to a supernova origin for the GRBs. The current situation based on the latest observational data will be discussed.  相似文献   

11.
The optical constants of water ice have been determined in the near infrared from 4000 to 7000 cm(-1). Polycrystalline ice films with thickness as great as ~1164 mum were formed by condensation of water vapor on a cold silicon substrate at temperatures of 166, 176, 186, and 196 K. The transmission of light through the ice films was measured during their growth from 0 to 1164 mum over the frequency range of approximately 500-7000 cm(-1). The optical constants were extracted by means of simultaneously fitting the calculated transmission spectra of films of varying thickness to their respective measured transmission spectra with an iterative Kramers-Kronig technique. Equations are presented to account for reflection losses at the interfaces when the sample is held in a cell. These equations are used to reanalyze the transmission spectrum of water ice (358-mum sample at 247 K) recorded by Ockman in 1957 [Philos. Mag. Suppl. 7, 199 (1958)]. Our imaginary indices for water ice are compared with those of Gosse et al. [Appl. Opt. 34, 6582 (1995)], Kou et al. [Appl. Opt. 32, 3531 (1993)], Grundy and Schmitt [J. Geophys. Res. 103, 25809 (1998)], and Warren [Appl. Opt. 23, 1206 (1984)], and with the new indices from Ockman's spectrum. The temperature dependence in the imaginary index of refraction observed by us between 166 and 196 K and that between our data at 196 K and the data of Gosse et al. at 250 K are compared with that predicted by the model of Grundy and Schmitt. On the basis of this comparison a linear interpolation of the imaginary indices of refraction between 196 and 250 K is proposed. We believe that the accuracy of this interpolation is better than 20%.  相似文献   

12.
This paper presents a comprehensive comparison of eight previously proposed correlations with available experimental data for the frictional pressure drop during condensation of refrigerants in helically grooved, horizontal microfin tubes. Calculated values are compared with experimental data for seven refrigerants (R11, R123, R134a, R22, R32, R125 and R410A) and eight tubes and with mass velocity from 78 to 459 kg/m2 s. The tubes had inside diameter at the fin root between 6.41 and 8.91 mm; the fin height varied between 0.15 and 0.24 mm; the fin pitch varied between 0.34 and 0.53 mm and helix angle between 13 and 20°. The results show that the overall r.m.s. deviations of relative residuals of frictional pressure gradient for all tubes and all refrigerants taking together decreased in the order of the correlations of Nozu et al. [Exp. Therm. Fluid Sci. 18 (1998) 82], Newell and Shah [Refrigerant heat transfer, pressure drop, and void fraction effects in microfin tubes. In: Proc. 2nd Int. Symp. on Two-Phase Flow and Experimentation, vol. 3. Italy: Edizioni ETS; 1999. p. 1623–39], Kedzierski and Goncalves [J. Enhanced Heat Transfer 6 (1999) 161], Cavallini et al. [Heat Technol. 15 (1997) 3], Goto et al. (b) [Int. J. Refrigeration 24 (2001) 628], Choi et al. [Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes. In: Proc. of IIF-IIR Commision B1, Paderborn, Germany, B4, 2001. p. 9–16], Haraguchi et al. [Condensation heat transfer of refrigerants HCFC134a, HCFC123 and HCFC22 in a horizontal smooth tube and a horizontal microfin tube. In: Proc. 30th National Symp. of Japan, Yokohama, 1993. p. 343–5], and Goto et al. (a) [Int. J. Refrigeration 24 (2001) 628], i.e., this final correlation (Goto et al. (a)) gives the best overall representation of the data.  相似文献   

13.
Oka et al. (Oka et al. 2005 Astrophys. J. 632, 882-893) have recently observed a large column density of H3+ in the Galactic centre. In one of the gaseous components, a column density of H3+ in its metastable level (3,3) of approximately 4 x 10(14) cm(-2) is measured. From the excitation of H3+, they deduce a density below 50 cm(-3) and a temperature approximately 270 K. In this paper, we report results for this region from a new version of our PDR code which includes the H3+ excitation. Models show it is unlikely that the mean temperature of the gas could be above 100 K. We also show that there is a possibility to produce hot H3+ in C-shocks.  相似文献   

14.
Recent observations at the National Institute of Standards and Technology indicate that the Ar I wavenumbers reported by Whaling et al. [J. Res. Natl. Inst. Stand. Technol. 107, 149 (2002)] are systematically too large. To investigate the source of this problem, selected lines of Ar I and Ar II were remeasured in the same spectra used by Whaling et al. The measurements show that the Ar I wavenumbers of Whaling et al. are systematically shifted with respect to the Ar II wavenumbers previously reported by Whaling et al. [J. Quant. Spectrosc. Radiat. Transfer 53, 1 (1995)] based on the same spectra. The Ar I wavenumbers can be corrected by a constant multiplicative correction of 0.999 999 933.  相似文献   

15.
The light distribution on the focal surface of spheric mirrors designed for telescopes in the lens-less Schmidt configuration is calculated analytically using geometrical optics.This analysis was motivated by considerations of the design of the AUGER fluorescence detector [J. Abraham, et al., Nucl. Instr. and Meth. A 533 (2004) 50]. Its geometrical parameters are used in the examples.  相似文献   

16.
Solar distillation, a promising technique for water purification and desalination, requires photothermal materials to efficiently convert solar energy into heat. In this study, a novel method is proposed wherein fresh carbonaceous (soot) particles, as a photothermal material, are embedded into electrospun fibrous membranes by burning candles (to produce soot) and electrospinning of polymer material simultaneously. The proposed method can produce several types of membranes with various particle positions (interior or exterior) in the polymer fiber. The particle positions were adjusted by changing the introduction points of particles using a polymer jet. Polymer fibers with diameters of several hundred nanometers were fabricated. Experiments revealed that the soot particle position did not influence the photothermal conversion performance of the membranes. The fabricated membrane could improve the heat localization up to 194.5% and exhibited water distillation and desalination rates as high as 1.60 and 1.55 kg m−2h−1, respectively, under 1-sun solar light irradiation. The proposed method opens a new route for the functionalization of polymer membranes.  相似文献   

17.
A comparison was made between the predictions of previously proposed empirical correlations and theoretical model and available experimental data for the heat transfer coefficient during condensation of refrigerants in horizontal microfin tubes. The refrigerants tested were R11, R123, R134a, R22 and R410A. Experimental data for six tubes with the tube inside diameter at fin root of 6.49–8.88 mm, the fin height of 0.16–0.24 mm, fin pitch of 0.34–0.53 mm and helix angle of groove of 12–20° were adopted. The r.m.s. error of the predictions for all tubes and all refrigerants decreased in the order of the correlations proposed by Luu and Bergles [ASHRAE Trans. 86 (1980) 293], Cavallini et al. [Cavallini A, Doretti L, Klammsteiner N, Longo L G, Rossetto L. Condensation of new refrigerants inside smooth and enhanced tubes. In: Proc. 19th Int. Cong. Refrigeration, vol. IV, Hague, The Netherlands, 1995. p. 105–14], Shikazono et al. [Trans. Jap. Sco. Mech. Engrs. 64 (1995) 196], Kedzierski and Goncalves [J. Enhanced Heat Transfer 6 (1999) 16], Yu and Koyama [Yu J, Koyama S. Condensation heat transfer of pure refrigerants in microfin tubes. In: Proc. Int. Refrigeration Conference at Purdue Univ., West Lafayette, USA, 1998. p. 325–30], and the theoretical model proposed by Wang et al. [Int. J. Heat Mass Transfer 45 (2002) 1513].  相似文献   

18.
Di Girolamo L 《Applied optics》1999,38(15):3196-3198
In a recent paper by Di Girolamo et al. [J. Geophys. Res. D 103, 8795 (1998)] a heuristic argument was used to derive a reciprocity principle applicable to reflected solar radiation measurements. Here a formal derivation of this reciprocity principle is presented. It is also demonstrated that a purely spatial reciprocal relationship exists between one-dimensional radiative transfer theory and the three-dimensional searchlight problem for horizontally homogeneous media.  相似文献   

19.
Chirico G 《Applied optics》2002,41(4):593-600
A theoretical study of the effect of a harmonic trapping force on the distribution of the fluorescence photon counts from Brownian particles is reported. The research of by Chen et al. [Biophys. J. 77, 553 (1999)] is extended. Simulations of the photon-counting histograms indicate that the trapping force parameters can be estimated from changes in the shapes of the histograms, at least for microspheres.  相似文献   

20.
Model of phytoplankton absorption based on three size classes   总被引:1,自引:0,他引:1  
Using the phytoplankton size-class model of Brewin et al. [Ecol. Model.221, 1472 (2010)], the two-population absorption model of Sathyendranath et al. [Int. J. Remote. Sens.22, 249 (2001)] and Devred et al. [J. Geophys. Res.111, C03011 (2006)] is extended to three populations of phytoplankton, namely, picophytoplankton, nanophytoplankton, and microphytoplankton. The new model infers total and size-dependent phytoplankton absorption as a function of the total chlorophyll-a concentration. A main characteristic of the model is that all the parameters that describe it have biological or optical interpretation. The three-population model performs better than the two-population model at retrieving total phytoplankton absorption. Accounting for the contributions of picophytoplankton and nanophytoplankton, rather than the combination of both as in the two-population model, improved significantly the retrieval of phytoplankton absorption at low chlorophyll-a concentrations. Class-dependent specific absorption of phytoplankton derived using the model compares well with previously published models. However, the model presented in this paper provides the specific absorption of three size classes and is applicable to a continuum of chlorophyll-a concentrations. Absorption obtained from remotely sensed chlorophyll-a using our model compares well with in situ absorption measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号