首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
林颖 《计算机工程》2011,37(22):64-66
针对数据库减量时不断重复挖掘的问题,在已有闭合序列模式算法PosD*的基础上,提出一种减量挖掘算法 DePosD*。通过移动频繁和非频繁闭合序列集合之间的数据,在原有挖掘结果上直接进行更新,减少挖掘的时间。实验结果证明,在减量过程中该算法的时间效率与PosD*相比有所提高。  相似文献   

2.
闭合序列模式挖掘算法   总被引:3,自引:1,他引:2  
提出了一种新的挖掘闭合序列模式的PosD算法,该算法利用位置数据保存数据项的顺序信息,并基于位置数据列表保存数据项的顺序关系提出了两种修剪方法:逆向超模式和相同位置数据。为了确保栅格存储的正确性和简洁性,另外还针对一些特殊情况做处理。试验结果表明,在中大型数据库和小支持度的情况下谊算法比CloSpan算法更有效。  相似文献   

3.
提出一种新的闭合序列模式挖掘算法,该算法利用位置数据保存数据项的序列信息,并提出两种修剪方法:逆向超模式和相同位置数据。为了确保格存储的正确性和简洁性,另外还针对一些特殊情况做处理。试验结果表明,在中大型数据库和小支持度的情况下,该算法比CloSpan算法[8]更有效。  相似文献   

4.
基于图结构的候选序列生成算法   总被引:4,自引:1,他引:3  
郭平  刘潭仁 《计算机科学》2004,31(1):136-139
先生成候选序列再判断候选序列是否为频繁序列,最后获得频繁序列是序列数据挖掘中基于候选序列挖掘算法的一般结构,如Apriori类算法,GSP算法,SPADE算法等。因此,研究候选序列生成算法具有普遍意义。本文首先研究了序列数据集(序列数据库)与图结构间的关系,证明了一个序列是频繁序列的必要条件是该序列对应于一个完全子图。以此为基础提出了基于图结构的候选序列生成算法,文中给出了算法正确性证明。在T25110D10K和T25120D100K数据集上的挖掘实验表明在本文提出的候选序列生成算法上进行挖掘比用Apriori算法进行挖掘的效率更高。  相似文献   

5.
序列模式的挖掘是近年来的研究热点之一,目前很多研究都集中在闭合频繁项集与闭合序列模式的挖掘,较少涉及更加复杂、有重要应用价值的组合序列模式.针对任意长度和任意组合次数的频繁组合序列模式,提出了一种挖掘全部闭合的组合序列的算法CloCSP.为克服指数量级的候选序列进行闭合检验的困难,提出了既能生成频繁组合序列,又能有效剪枝,并同时完成闭合检验的混合扩展策略,该策略无需维护候选集.实验表明,CloCSP算法能够有效挖掘出隐藏在序列数据中,尤其是稠密数据集内的闭合组合序列模式,有助于揭示更加复杂的序列模式.  相似文献   

6.
为了对闭合多维序列模式进行挖掘,研究了多维序列模式的基本性质,进而提出了挖掘闭合多雏序列模式的新方法.该方法集成了闭合序列模式挖掘方法和闭合项目集模式挖掘方法,通过证明该方法的正确性,指出闭合多维序列模式集合不大于多维序列模式集合,并且能够覆盖所有多维序列模式的结果集.最后分析了该方法所具备的两个明显优点,表明了在闭合多维序列模式挖掘中的可行性.  相似文献   

7.
针对PrefixSpan算法中反复扫描投影数据库寻找局部频繁项并重复构造挖掘大量重复投影数据库的不足,提出一种基于序列末项位置信息的序列模式挖掘算法SPM-LIPT。通过连接2-序列位置信息表(LIPT)找到序列模式的下一项,实现序列模式增长,避免对投影数据库反复扫描;同时通过检查相同末项序列首位置信息表(SLIFPT)进行前向剪枝;消除大量重复投影的构建。最后通过实验证明了算法的有效性。  相似文献   

8.
为了减少在序列模式挖掘过程中由于重复运行挖掘算法而产生的时空消耗,提出了一种基于频繁序列树的交互式序列模式挖掘算法(ISPM). ISPM算法采用频繁序列树作为序列存储结构,频繁序列树中存储数据库中满足频繁序列树支持度阈值的所有序列模式及其支持度信息.当支持度发生变化时,通过减少本次挖掘所要构造投影数据库的频繁项的数量来缩减投影数据库的规模,从而减少时空消耗.实验结果表明,ISPM算法在时间性能上优于PrefixSpan算法和Inc-Span算法  相似文献   

9.
序列模式挖掘研究与发展   总被引:1,自引:1,他引:0  
王虎  丁世飞 《计算机科学》2009,36(12):14-17
序列模式挖掘是数据挖掘的一个重要研究课题,它在很多领域中都有着广泛的应用.首先讨论了序列模式挖掘的相关背景,然后对序列模式挖掘进行分类,并在此基础上对每一类序列模式挖掘算法的特点进行了介绍和比较;最后,对序列模式挖掘未来的研究重点进行展望,以便研究者对序列模式挖掘做进一步的研究.  相似文献   

10.
基于经典的BIDE算法,提出一种多核并行闭合序列模式挖掘算法——MT_BIDE。该算法在频繁序列扩展判断前进行剪枝,在扩展过程中动态调整频繁序列及其伪投影数据集,平衡不同线程间挖掘闭合序列模式的计算量差异。实验结果表明,该算法具有较高的运行效率和加速比。  相似文献   

11.
数据挖掘领域的一个活跃分支就是序列模式的发现,即在序列数据库中找出所有的频繁子序列。介绍序列模式挖掘的基本概念,然后对序列模式中的经典算法PrefixSpan算法和基于PrefixSpan框架的闭合序列模式CloSpan算法进行了描述,并对它们的执行过程及其特点进行了分析与比较,总结了各自的优缺点,指出PrefixSpan算法适用于短序列方面挖掘,而CloSpan算法在长序列或者阈值较低时胜过PrefixSpan算法且CloSpan算法挖掘大型的数据库有更好的性能,得出的结果对序列模式挖掘的设计有重要的参考价值。  相似文献   

12.
提出了一种基于H-tree的多维序列模式挖掘算法,首先在序列信息中挖掘序列模式,然后针对每个序列模式,根据包含此模式的所有元组中的多维信息构造H-tree树,挖掘出相应的多维模式,从而得到了多维序列模式。该算法将多维分析方法与序列模式挖掘算法有效地结合在一起,当维度较高时具有较高的性能。  相似文献   

13.
DNA序列数据挖掘技术   总被引:5,自引:1,他引:4       下载免费PDF全文
朱扬勇  熊赟 《软件学报》2007,18(11):2766-2781
DNA序列数据是一类重要的生物数据.研究DNA序列数据解读其含义是后基因组时代的主要研究任务.数据挖掘是目前最有效的数据分析手段之一,用于发现大量数据所隐含的各种规律,也是生物信息学采用的主要数据分析技术.将数据挖掘技术用于DNA序列数据分析,已得到了广泛关注和快速发展,并取得了许多研究成果.综述了DNA序列数据挖掘领域的研究状况和进展,提出了3个研究阶段:基于统计的挖掘方法应用阶段、一般化挖掘方法应用阶段和专门的DNA序列数据挖掘方法设计阶段.阐述了DNA序列数据挖掘的基础是序列相似性,评述了DNA序列数据挖掘领域所采用的关键技术,包括DNA序列模式、关联、聚类、分类和异常挖掘等,分析讨论了其相应的生物应用背景和意义.最后给出DNA序列数据挖掘进一步研究的热点问题,包括DNA序列数据新的存储和索引机制的设计、根据生物领域知识的数据挖掘新模型和算法的设计等.  相似文献   

14.
序列中的一般化局部序列模式发现   总被引:4,自引:0,他引:4       下载免费PDF全文
已有的时序序列中的模式发现方法主要关注于发现全局的模式,该模式的频繁度量通过扫描序列的所有记录产生.然而,仅在某个时间段中频繁的局部模式在实际中是广泛存在的,对其有效的发现是有意义的.介绍了一种在时序序列中发现一般化局部序列模式的方法.发现的模式具有形式\"在子序列s中,如果A发生,则B在时间T内发生\".提出的方法包括一个支持高效的模式实例定位与计数的索引结构和一个2段的局部模式挖掘算法.试验结果符合问题的定义,并证明了提出方法的优越性.  相似文献   

15.
目前,已提出了一些关联规则挖掘中的隐私保护方法,而对序列模式挖掘中隐私保护的研究却很少。为此,提出了一种有效的敏感序列隐藏算法CLSDA(current least sequences delete algorithm),该算法对候选序列加权,在删除序列的过程中随时更新权值,使用贪心算法获得局部最优解,尽可能减少对原始数据库的改动。实验结果表明,与现有序列模式隐藏方法相比,算法CLSDA将具有更好的隐藏效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号