首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
计量线高次谐波的定量研究   总被引:1,自引:2,他引:1  
采用自制的840/mm金膜自支撑透射光栅和美国IRD公司的AXUV100G光电二极管探测器,定量研究了光谱辐射标准和计量光束线在5~140 nm波段的高次谐波。研究了Al、Si3N4和Zr滤片在不同能量范围对高次谐波的抑制作用,给出了实验数据和曲线。实验结果显示:在5~15 nm波段,不用任何滤片高次谐波的信号强度<7%;在5~34 nm波段,适当的选用Al、Si3N4和Zr滤片可有效地抑制高次谐波,将高次谐波占基波的积分信号强度比例控制在<14%,经探测器的量子效率修正后高次谐波的百分比在6.5%以内。在经过MgF2窗滤波的115~140 nm波段,高次谐波的衍射峰几乎完全被抑制。这一研究为软X射线和极紫外的光谱计量、探测器定标和光学元件性能测试奠定了基础。  相似文献   

2.
国家同步辐射实验室光谱辐射标准和计量光束线(U27)的SGM分支是专门为光学元件性能测试和探测器定标而建造的。为了能够精确测量光学元件在极紫外和软X射线波段的性能,必须充分抑制高次谐波提高光谱纯度。对于已经建成的光束线,要改变光学设计和现有结构来抑制高次谐波是困难的,最简单且有效的方法是用不同材料的滤片来抑制不同波段的高次谐波。为了研究高次谐波的抑制效果,可将840 l/mm透射光栅放在U27光束线SGM分支的出射狭缝后面色散出射光,用探测器做角度扫描记录下信号强度曲线,然后分析得到高次谐波的含量和分布。本文分别研究了不同厚度的Al(200、400和600 nm)、Si3N4/Mo/Si, Si3N4/Mo/Si/Mo/Si多层膜滤片(100/50/200 nm, 100/50/150/150/250 nm)和Al/Mg/Al 滤片对13~43 nm光谱高次谐波的抑制效果。 研究结果显示,400 nm厚的Al滤片适合于17~33 nm光谱高次谐波的抑制,在保证探测器信号强度的条件下,高次谐波信号强度占探测器信号强度的比例<2%,经探测器量子效率修正后,高次谐波比例<0.6%。Si3N4/Mo/Si/Mo/Si多层膜滤片可以有效地抑制13~19 nm的高次谐波,Al/Mg/Al滤片对30~43 nm的高次谐波有很好的抑制作用。这一结果为光学元件的透射率、反射率和探测器精确定标奠定了基础。  相似文献   

3.
一种可直接脉冲调制的MEMS红外激发源   总被引:4,自引:1,他引:3  
针对红外气体探测器对光源的要求,结合现有MEMS(微机电系统)工艺及与其兼容的IC工艺,研制了一种可用于红外多气体传感器的脉冲式MEMS辐射光源。该光源主要有Si3N4/SiO2的复合支撑层和铂金发热电极组成,可以产生相当于黑体300~800 K的红外辐射,在温度T=1 106 K时有λ=2.62 μm峰值辐射波长;并且光源有足够强的辐射强度和2~15 μm红外辐射波段,能够满足大部分气体在2~14 μm波长范围内特征的吸收谱线的要求。经过对辐射元的动态测量可知,辐射源的动态调制频率可达到50 Hz,完全能够满足气体测量对所需红外光源调制频率的要求。  相似文献   

4.
利用InGaAs/InGaAsP应变量子阱外延层材料制作出高功率半导体激光列阵模块。激光芯片宽1 cm,腔长1200 μm,条宽200 μm,填充密度为50%,前后腔面光学膜分别为单层Al2O3和Al2O3/5(HfO2/SiO2)/HfO2,室温连续输出功率达到68.5 W,器件光谱中心波长为1 059 nm,光谱宽度(FWHM)为9 nm。  相似文献   

5.
利用微波放电激励高纯氮,并采用放大自发辐射法,研究了不同微波激励功率和不同N2气压条件下N2分子二聚物352.3nm辐射的增益特性。给出了沿放电管轴线N2分子二聚物352.3nm辐射的小信号增益系数随微波激励功率和充入放电管N2气压变化的规律。研究结果表明当微波功率大于100W时,充入N2气压在330~1 800Pa范围内,N2分子二聚物在352.3nm处存在受激辐射特性。当微波功率为500W,充入放电管的N2气压为1 100Pa时,N2分子二聚物352.3nm辐射的小信号增益系数最大为1.08%cm-1。另外,还给出了N2分子二聚物352.3nm辐射增益沿放电管径向分布情况。 N2分子二聚物352.3nm辐射的增益系数在放电管中心最小,接近管壁时最大。  相似文献   

6.
描述了应用光学实验室研制的 VUV 稀有气体电离室及 Al2O3光电二极管的设计、结构和性能,讨论了电离室和光电二极管应用时的测量误差,给出了 Al2O3光电二极管的绝对量子效率.  相似文献   

7.
高平均功率腔内和频蓝光Nd:YAG激光器   总被引:16,自引:6,他引:10  
高平均功率蓝光激光是当前固体激光技术研究热点之一。尽管通过Nd3+4F3/24I9/2态谱线倍频可获得瓦级蓝光输出,然而其准三能级物理特性严重限制其更高功率输出。研究了Nd3+离子4F3/24I13/2态1.3 μm谱线腔内三倍频产生高平均功率蓝光激光,获得4.3 W蓝光激光输出,重复频率3.5 kHz,脉冲宽度150±10 ns,光束质量M2因子约为5±1。研究表明:Nd∶YAG晶体1.3 μm多谱线振荡是制约实验结果的重要因素,若克服多谱线振荡问题,有望获得10 W级蓝光激光输出。  相似文献   

8.
真空紫外空阴极光源是一种稳定的气体放电光源,工作气体为He、Ne、Ar、N2、H2、CO等,工作气压10torr~10-2torr,工作电流100mA~400mA,能在20~200nm波段产生丰富的原子和离子谱线,光谱辐射稳定性优于±1%。  相似文献   

9.
Al2O3光电二极管由于光谱响应波段较宽,性能稳定,经稀有气体电离室定标后,常用作软X线-真空紫外波段的光谱辐射传递标堆探测器。描述我们研制的Al2O3光电二极管的结构原理及Al2O3光阴极制备工艺,讨论性能测试方法与装置,给出测试结果。  相似文献   

10.
紫外-真空紫外波段的Al+MgF2   总被引:4,自引:2,他引:4  
Al+MgF2膜是真空紫外波段常用的一种反射膜。根据薄膜光学的电磁场理论计算了正入射条件下Al+MgF2膜在真空紫外波段的反射率随氟化镁膜厚度的变化规律。研究了Al+MgF2膜的制备工艺,利用Seya-Namioka紫外-真空紫外反射率计测得Al+MgF2膜的反射率在150nm~340nm的波段上高于80%。Al+MgF2膜制备一年后,其真空紫外波段的反射率未有明显变化。  相似文献   

11.
High resolution (better than 20 nm) contact micrographs have been produced with exposure times of about a nanosecond. The illuminating source was a short-lived carbon plasma produced by focusing a single short (~1 ns) 100 J pulse from the Vulcan laser at the Rutherford Appleton Laboratory (RAL) to a 300 μm spot on a graphite target. This plasma emits strongly in the soft X-ray region, particularly at the CVI (3.37 nm) and CV (4.03 nm) lines. The specimens were behind a 100 nm thick Si3N4 window, at atmospheric pressure in an environmental cell. The images of diatoms recorded on X-ray resist showed features down to the limit of resolution of the SEM used to view the developed resist, which was about 20 nm.  相似文献   

12.
T. Spalvins 《Wear》1978,46(1):295-304
Sputtered Cr3C2, Cr3Si2 and MoSi2 wear-resistant films (0.05–3.5 μm thick) were deposited on metal and glass surfaces. Electron transmission, electron diffraction and scanning electron microscopy were used to determine the microstructural appearance. Strong adherence was obtained with these sputtered films. Internal stresses and defect crystallographic growth structures of various configurations within the film have progressively more undesirable effects for film thicknesses greater than 1.5 μm. Sliding contact and rolling element bearing tests were performed with these sputtered films. Bearings sputtered with a duplex coating (a 0.1 μm thick undercoating of Cr3Si2 and subsequently a 0.6 μm coating of MoS2) produced marked improvement (more than 10.5 × 107 cycles) over straight MoS2 films.  相似文献   

13.
Dry friction and wear tests were performed with self-mated couples of SiC containing 50% TiC, Si3N4---BN, SiC---TiB2 and Si3N4 with 32% TiN at room temperature and 400°C or 800°C.Under room temperature conditions, the friction coefficient of the couple SiC---TiC/SiC---TiC is only half of that of the couple SiC/SiC and the wear is one order of magnitude smaller. At 400°C, it exceeds the friction coefficient of SiC/SiC except at the highest sliding velocity of 3 m s−1. At lower sliding velocities the wear coefficient of SiC---TiC/SiC---TiC is lower than that of SiC/SiC.The couple Si3N4---TiN/Si3N4---TiN exhibits high friction coefficients under all test conditions. At room temperature the wear volume of the self-mated couples of Si3N4 and Si3N4---TiN after a sliding distance of 1000 m is similar, but Si3N4---TiN shows a running-in behaviour. At 800°C the wear coefficient of Si3N4---TiN/Si3N4---TiN is approximately two orders of magnitude smaller than that of Si3N4/Si3N4, and equal to those at room temperature. At 22°C the addition of BN reduces the friction of Si3N4. The wear coefficient is independent of sliding velocity and the self-mated couples showing running-in. Friction and wear increase with increasing temperature. The wear coefficient of SiC---TiB2 above 0.5 m s−1 at 400°C is advantageously near 10−6 mm3 (Nm)−1. With the other test conditions the wear behaviour is similar to SSiC.  相似文献   

14.
Tests on self-mated Si3N4- and SiC-based ceramics as well as ceramic-ceramic composites were performed in an Amsler-type wear tester under dry and water-lubricated rolling conditions with 10% slip. Under dry friction, wear coefficients of the materials varied by four decades. Unlubricated wear coefficients below 10−7 mm3/(N.m), defined as a practical limit for applicability, can be achieved with Si3N4-TiN below 775 MPa and with HIP-SiC below 750 MPa. HIPped Si3N4 and hot-pressed SiC-TiC under dry friction exhibit a small dependency of wear coefficient on Hertzian pressure, with wear coefficients below 10−6 mm3/(N.m). The lowest wear coefficient below 10−6 mm3/(N.m) with water lubrication was found for Si3N4-TiN and S-RBSi3N4; water reduces the variability in wear coefficient for Si3N4- and SiC-based ceramics.  相似文献   

15.
The influence of sliding speed on the unlubricated tribological behaviors of silicon nitride–boron nitride (Si3N4-hBN) composites was investigated with two modes in air by a pin-on-disc tribometer. Using the upper disc–on–bottom pin test mode, as the sliding speed increased, the friction coefficient of the sliding pairs showed an upward trend; for example, from 0.18 at the sliding speed of 0.40 m/s to 0.54 at the sliding speed of 1.31 m/s for the Si3N4/Si3N4–20% hBN pair. The surface analysis indicated that a tribochemical film consisting of SiO2 and H3BO3 formed on the wear surfaces of the Si3N4/Si3N4–20% hBN sliding pair at sliding speeds of 0.40 and 0.66 m/s. Moreover, the formation of this film lubricated the wear surfaces. At the sliding speed of 1.31 m/s, no tribochemical film formed on the wear surfaces, most likely due to the increase in surface temperature. In the upper pin–on–bottom disc test mode, the wear mechanism was dominated by abrasive wear, and no tribochemical products could be detected on the wear surfaces. The increase in sliding speed weakened the degree of abrasive wear, leading to a decrease in the friction coefficients.  相似文献   

16.
利用法布里-珀罗(F-P)标准具选频实现了单纵模593.5 nm激光和频输出。采用单块Nd:YVO4晶体,通过对谐振腔输出镜膜系的设计与优化,在两镜线性腔中实现了稳定的1 064 nm与1 342 nm双波长振荡。放入I类位相匹配和频晶体LBO进行腔内和频时,抽运功率为2 W可获得52 mW的593.5 nm橙黄色激光输出,但输出光束噪声较大,其RMS噪声为6.8%。在腔内加入400 μm厚熔融石英标准具进行选频,实现了单纵模593.5 nm激光输出,单纵模线宽为600 MHz,输出功率为34 mW,RMS噪声降为0.3%,实现了低噪声输出。实验结果表明,在和频过程中,利用一块标准具对两个波长同时进行选频是获得单纵模和频光的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号