首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper employs an analytical method to analyze vibration of piezoelectric coupled thick annular functionally graded plates (FGPs) subjected to different combinations of soft simply supported, hard simply supported and clamped boundary conditions at the inner and outer edges of the annular plate on the basis of the Reddy's third-order shear deformation theory (TSDT). The properties of host plate are graded in the thickness direction according to a volume fraction power-law distribution. The distribution of electric potential along the thickness direction in the piezoelectric layer is assumed as a sinusoidal function so that the Maxwell static electricity equation is approximately satisfied. The differential equations of motion are solved analytically for various boundary conditions of the plate. In this study closed-form expressions for characteristic equations, displacement components of the plate and electric potential are derived for the first time in the literature. The present analysis is validated by comparing results with those in the literature and then natural frequencies of the piezoelectric coupled annular FG plate are presented in tabular and graphical forms for different thickness-radius ratios, inner-outer radius ratios, thickness of piezoelectric, material of piezoelectric, power index and boundary conditions.  相似文献   

2.
This paper presents analytical solutions of deflection and stress for orthotropic plates using a two variable refined plate theory. The theory accounts for parabolic variation of transverse shear stress through the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factor. Additional features of the theory are that it has strong similarity with classical plate theory in many aspects, and the number of involved variables is only two as against three in case of other shear deformation theories. The Levy-type solution procedure in conjunction with the state space concept is used to determine the closed-form solutions for orthotropic rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions. Comparison studies are performed to verify the validity of the present results. Finally, the effects of thickness ratio, modulus ratio and aspect ratio on the deflection and stress of orthotropic plates are investigated and discussed.  相似文献   

3.
Spline function approximation technique is used to analyze the free vibration of symmetric and anti-symmetric cross-ply plates under shear deformation theory. The equations of motion of the plate are derived using YNS theory. A system of coupled differential equations in terms of displacement and rotational functions are obtained by assuming the solution in a separable form. These functions are approximated using Bickley-type splines of suitable orders. A generalized eigenvalue problem is obtained on applying the process of point collocation with suitable boundary conditions. Parametric studies have been made to investigate the frequency response of the plates with reference to the material properties, number of layers, fiber orientation, side-to-thickness ratio, aspect ratio and relative layer thickness. Some results are compared with existing solution obtained by FEM.  相似文献   

4.
This paper presents an approximate analysis of rectangular plates resting on Winkler foundations based on the Mindlin plate theory. The plates are subject to any combination of free, simply supported and clamped boundary conditions. Solutions to the problem are obtained using the differential quadrature method (DQM) by solving the governing differential equations. Numerical results are compared with existing literature to establish the validity and accuracy of the method. This study shows numerically the effects of shear deformation on the deflections and stress resultants at some selected locations. The distributions of the bending and twisting moments and shear force for several plates are presented graphically by varying the relative thickness ratio h/a to further show the significant effect of shear deformation.  相似文献   

5.
A new hyperbolic shear deformation theory taking into account transverse shear deformation effects is presented for the buckling and free vibration analysis of thick functionally graded sandwich plates. Unlike any other theory, the theory presented gives rise to only four governing equations. Number of unknown functions involved is only four, as against five in case of simple shear deformation theories of Mindlin and Reissner (first shear deformation theory). The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.  相似文献   

6.
In this paper, an analytical solution is provided for the postbuckling behaviour of moderately thick plates and shallow shells made of functionally graded materials (FGMs) under edge compressive loads and a temperature field. The material properties of the functionally graded shells are assumed to vary continuously through the thickness of the shell, according to a power law distribution of the volume fraction of the constituents. The fundamental equations for moderately thick rectangular shallow shells of FGM are obtained using the von Karman theory for large transverse deflection and high-order shear deformation theory for moderately thick plates. The solution is obtained in terms of mixed Fourier series and the obtained results are compared with those of the Reissner–Mindlin's theory for moderately thick plates and the classical theory ignoring transverse shear deformation. The effect of material properties, boundary conditions and thermomechanical loading on the buckling behaviour and the associated stress field are determined and discussed. The results reveal that thermomechanical coupling effects and the boundary conditions play a major role in dictating the response of the functionally graded plates and shells under the action of edge compressive loads.  相似文献   

7.
An exact closed-form frequency equation is presented for free vibration analysis of circular and annular moderately thick FG plates based on the Mindlin's first-order shear deformation plate theory. The edges of plate may be restrained by different combinations of free, soft simply supported, hard simply supported or clamped boundary conditions. The material properties change continuously through the thickness of the plate, which can vary according to a power-law distribution of the volume fraction of the constituents, whereas Poisson's ratio is set to be constant. The equilibrium equations which govern the dynamic stability of plate and its natural boundary conditions are derived by the Hamilton's principle. Several comparison studies with analytical and numerical techniques reported in literature and the finite element analysis are carried out to establish the high accuracy and superiority of the presented method. Also, these comparisons prove the numerical accuracy of solutions to calculate the in-plane and out-of-plane modes. The influences of the material property, graded index, thickness to outer radius ratios and boundary conditions on the in-plane and out-of-plane frequency parameters are also studied for different functionally graded circular and annular plates.  相似文献   

8.
Based on classical plate theory (CLPT), free vibration analysis of a circular plate composed of functionally graded material (FGM) with its upper and lower surfaces bounded by two piezoelectric layers was performed. Assuming that the material properties vary in a power law manner within the thickness of the plate the governing differential equations are derived. The distribution of electric potential along the thickness direction in piezoelectric layers is considered to vary quadratically such that the Maxwell static electricity equation is satisfied. Then these equations are solved analytically for two different boundary conditions, namely clamped and simply supported edges. The validity of our analytical solution was checked by comparing the obtained resonant frequencies with those of an isotropic host plate. Furthermore, for both FGM plate and FGM plate with piezoelectric layers, natural frequencies were obtained by finite element method. Very good agreement was observed between the results of finite element method and the method presented in this paper. Then for the two aforementioned types of boundary conditions, the values of power index were changed and its effect on the resonant frequencies was studied. Also, the effect of piezoelectric thickness layers on the natural frequencies of FGM piezoelectric plate was investigated. This paper was recommended for publication in revised form by Associate Editor Seockhyun Kim Saeed Jafari Mehrabadi received his B.S. in mechanical Engineering from Azad University, Arak, Iran, in 1992. He then received his M.S. from Azad University, Tehran, Iran in 1995. Now he is a faculty member of the department of mechanical engineering in Azad university of Arak, Iran and PhD student of Azad University, Science and Research Campus, Pounak, Tehran, Iran. His interests include computational methods and solid mechanics such as vibration, buckling.  相似文献   

9.
Using the refined sinusoidal shear deformation plate theory and including plate-foundation interaction, a thermoelastic bending analysis is presented for a simply supported, rectangular, functionally graded material plate subjected to a transverse uniform load and a temperature field, and resting on a two-parameter (Pasternak model) elastic foundation. The present shear deformation theory is simplified by enforcing traction-free boundary conditions at the plate faces. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The equilibrium equations of the present plate are given based on various plate theories. A number of examples are solved to illustrate the numerical results concerning bending response of homogeneous and functionally graded rectangular plates resting on two-parameter elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, volume fraction distributions, and elastic foundation parameters are studied.  相似文献   

10.
The axisymmetric flexure responses of moderately thick annular plates under static loading are investigated. The shear deformation is considered using the first-order Reissner/Mindlin plate theory and the solutions are obtained using the differential quadrature (DQ) method. In the solution process, the governing differential equations and boundary conditions for the problem are initially discretized by the DQ algorithm into a set of linear algebraic equations. The solutions of the problem are then determined by solving the set of algebraic equations. This study considers the plate subjected to various combinations of clamped, simply-supported, free and guided boundary conditions and different loading manners. The accuracy of the method is demonstrated through direct comparison of the present results with the corresponding exact solutions available in the literature.  相似文献   

11.
In this paper, a free vibration analysis of moderately thick circular functionally graded (FG) plate integrated with two thin piezoelectric (PZT4) layers is presented based on Mindlin plate theory. The material properties of the FG core plate are assumed to be graded in the thickness direction, while the distribution of electric potential field along the thickness of piezoelectric layers is simulated by sinusoidal function. The differential equations of motion are solved analytically for two boundary conditions of the plate: clamped edge and simply supported edge. The analytical solution is validated by comparing the obtained resonant frequencies with those of an isotropic host plate. The emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. Good agreement between the results of this paper and those of the finite element analyses validated the presented approach.  相似文献   

12.
An analytical method is developed for the bending response of annular sector Mindlin plates with two radial edges simply supported, and exact solutions are presented in the form of Levy-type series. Several different boundary conditions on the two circular edges are considered, viz. simply supported-simply supported, clamped-clamped and free-free. Numerical results for the case of uniform loading are presented to indicate the effect of shear deformation on the deflections and stress resultants at various points in the plate. Twisting stress couple and transverse shear stress resultant distributions along and near the edges of the plate are illustrated graphically, and the principal differences between the results predicted by Mindlin's plate theory and classical thin plate theory are discussed in detail. Results obtained with the present exact analysis may serve as references for approximate solutions and, especially, as a ‘shear locking’ test for thick plate finite element analysis.  相似文献   

13.
Free vibration of laminated composite plates using two variable refined plate theory is presented in this paper. The theory accounts for parabolic distribution of the transverse shear strains through the plate thickness, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Equations of motion are derived from the Hamilton's principle. The Navier technique is employed to obtain the closed-form solutions of antisymmetric cross-ply and angle-ply laminates. Numerical results obtained using present theory are compared with three-dimensional elasticity solutions and those computed using the first-order and the other higher-order theories. It can be concluded that the proposed theory is not only accurate but also efficient in predicting the natural frequencies of laminated composite plates.  相似文献   

14.
The influence of hygrothermal effects on the postbuckling of shear deformable laminated plates subjected to a uniaxial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected by the variation of temperature and moisture, and are based on a micro-mechanical model of a laminate. The governing equations of a laminated plate are based on Reddy's higher-order shear deformation plate theory that includes hygrothermal effects. The initial geometric imperfection of the plate is taken into account. Two cases of the in-plane boundary conditions are considered. A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, antisymmetric angle-ply and symmetric cross-ply laminated plates under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, the character of in-plane boundary conditions, transverse shear deformation, plate aspect ratio, total number of plies, fiber orientation, fiber volume fraction and initial geometric imperfections are studied.  相似文献   

15.
The vibration behavior of a piezoelectrically actuated thick functionally graded (FG) annular plate is studied based on first order shear deformation plate theory (FSDPT). A consistent formulation that satisfies the Maxwell static electricity equation is presented so that the full coupling effect of the piezoelectric layer on the dynamic characteristics of the annular FG plate can be estimated based on the free vibration results. The differential equations of motion are solved analytically for various boundary conditions of the plate. The analytical solutions are derived and validated by comparing the obtained resonant frequencies of the composite plate with those of an isotropic core plate. As a special case, assuming that the material composition of core plate varies continuously in the direction of the thickness according to a power law distribution, a comprehensive study is conducted to show the influence of functionally graded index on the vibration behavior of smart structure. Also, the good agreement between the results of this paper and those of the finite element (FE) analyses validates the presented approach. This paper was recommended for publication in revised form by Associate Editor Eung-Soo Shin Farzad Ebrahimi received his B.S. and M.S. degree in Mechanical Engineering from University of Tehran, Iran. He is currently working on his Ph.D. thesis under the title of “Vibration analysis of smart functionally graded plates” at Smart Materials and Structures Lab in Faculty of Mechanical Engineering of the University of Tehran. His research interests include vibration analysis of plates and shells, smart materials and structures and functionally graded materials.  相似文献   

16.
In this research, mechanical buckling of circular plates composed of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM circular plate under uniform radial compression are derived, based on the higher order shear deformation plate theory (HSDT). Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the variational method, the system of fundamental partial differential equations are established. A buckling analysis of a functionally graded circular plate (FGCP) under uniform radial compression is carried out and the results are given in closed-form solutions. The results are compared with the buckling loads of plates obtained for FGCP based on the first order shear deformation plate theory (FSDT) and classical plate theory (CPT) given in the literature. The study concludes that HSDT accurately predicts the behavior of FGCP, whereas the FSDT and CPT overestimates buckling loads.  相似文献   

17.
A free vibration study of antisymmetric angle-ply composite plates including shear deformation and rotatory inertia using the point collocation method and applying spline function approximations is presented. The equations of motion for the plate are derived using the theory of Yang, Norris and Stavsky. The solution is assumed in a separable form to obtain a system of coupled differential equations in displacement and rotational functions and these functions were approximated by Bickley-type splines of order three. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibrations of two- and four-layered plates, made up of several types of layer materials and subjected to two types of boundary conditions are considered. Parametric studies were made of the variation of frequency parameters with respect to the aspect ratio, side-to-thickness ratio and ply angle. The numerical results are presented through diagrams and, in some cases, are compared with results obtained by FEM.  相似文献   

18.
Nonlinear bending analysis is presented for a simply supported, functionally graded rectangular plate subjected to a transverse uniform or sinusoidal load and in thermal environments. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded plate are based on Reddy's higher-order shear deformation plate theory that includes thermal effects. Two cases of the in-plane boundary conditions are considered. A mixed Galerkin-perturbation technique is employed to determine the load-deflection and load-bending moment curves. The numerical illustrations concern nonlinear bending response of functional graded rectangular plates with two constituent materials. The influences played by temperature rise, the character of in-plane boundary conditions, transverse shear deformation, plate aspect ratio and volume fraction distributions are studied.  相似文献   

19.
A multilayered plate composed of thin layers of isotropic materials is analyzed. The problem for the multilayered plate with body forces is formulated by using the lamination theory in which displacement fields are expressed in terms of in-plane displacements on a main plane and transverse displacement. Placing the main plane at an appropriate distance from the lower surface of the plate, a set of equilibrium equations is shown to be written in uncoupled forms, which are identical to those for an uncoupled plate such as a single layer plate. It is proved that the complete solutions of the multilayered plates subject to the specified in-plane resultant tractions or in-plane displacements on its whole boundary can be obtained from the sum of solutions for uncoupled plates. Closed form solutions are obtained for a circular laminate clamped or simply supported on its the boundary as well as for a rotating disk with a constant angular velocity. The calculations of thermoelastic stresses and displacements in multilayered plates are also discussed. Closed form solutions are obtained for a circular laminate with distributed temperature varying in the radial direction and through the thickness.  相似文献   

20.
Hamilton's variational principle is used for the derivation of equations of transversally isotropic laminated annular plates motion. Nonlinear strain—displacements relations are considered. Linearized vibration and buckling equations are obtained for the annular plates uniformly compressed in the radial direction. The effects of transverse shear and rotational inertia are included. A closed form solution is given for the mode shapes in terms of Bessel, power and trigonometric functions. The eigenvalue equations are derived for natural frequencies and buckling loads of annular and circular plates elastically restrained against rotation along edges. Classical-type plate theory results are obtained then by letting the transverse shear stiffness go to infinity and rotational inertia go to zero. Numerical examples are presented by tables and figures for 2- and 3-layered plates with various geometrical and physical parameters. The transverse shear, rotational inertia and boundary conditions effects are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号