首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti3SiC2/cordierite coatings with different critical plasma spray parameters (CPSP) were fabricated via atmospheric plasma spraying method. The microstructure and phase constitution of the as-sprayed Ti3SiC2/cordierite coatings were characterized. The effects of CPSP conditions on the electromagnetic shielding, and dielectric and microwave absorption properties of coatings in the frequency of 8.2-12.4 GHz were also measured and investigated. The results showed that both real and imaginary part of the complex permittivity decrease with increasing CPSP values, which can be ascribed to the decomposition of some Ti3SiC2 into TiC. The calculated reflection loss of the as-sprayed Ti3SiC2/cordierite coatings with different CPSP conditions and thicknesses indicates that coatings with CPSP 0.3, 0.35, and 0.425 exhibit excellent microwave absorption property in the thickness of 1.5 mm. In order to broaden the bandwidth of the coatings, a double-layer coating system was designed. The calculated reflection loss results show that when the thickness of matching layer is 0.3 mm and the thickness of absorbing layer is 1.5 mm, the double-layer coating system shows a proper microwave absorption property with a minimum absorption value of ?17.37 dB at 9.67 GHz and a absorption bandwidth (RL less than ?5 dB) of 4.16 GHz in the investigated frequency.  相似文献   

2.
目前,具有高效、宽、薄等特点的微波吸收材料已经引起了研究人员的广泛关注。在此文中,采用真空电弧熔炼和高能球磨法制备片状NdxCe2-xCo17合金粉末并且通过相关设备研究Nd含量和匹配厚度对相组成、形貌、电磁参数和微波吸收性能的影响。结果显示,Nd0.3Ce1.7Co17粉末的最大反射率可以达到-32.36dB,同时有效带宽能扩大4倍。此外,调整Nd含量能成功优化Ce2Co17合金粉末的微波吸收性能。随着Nd含量的增加,吸收峰有向低频段移动的趋势,并且当厚度为1.8mm时,Nd0.3Ce1.7Co17 粉末在7.28 GHz处,最大反射率可以达到-30.53 dB并且有效带宽为2.24 GHz,这些表明Nd-Ce-Co合金可以用作在C波段具有低厚度、宽频和高效等特点的理想吸收材料。  相似文献   

3.
制备以石蜡为基体并具有玻璃包覆Fe73.5Si13.5B9Nb3Cu1非晶丝不同填充比的同轴介电样品,在相对较高的微波吸收频段(2~18 GHz)下研究短丝填充比(质量分数3%~9%)和样品厚度(1~7 mm)对同轴介电样品的微波吸收性能的影响规律。采用X射线衍射谱(XRD)、差示扫描量热分析(DSC)、扫描电子显微分析(SEM)和矢量网格分析仪(SNA)表征材料的微结构并评价其吸波性能。结果表明,不同填充比的同轴介电样品的复磁导率和复介电常数存在重要的频率范围(6~18 GHz)。模拟结果显示,具有3 mm厚度和7%填充比的样品具有较好的微波吸收性能,其反射率在14 GHz时达到峰值-34 dB。这对于开发具有更宽微波吸收范围应用的微丝介电材料是十分有益的。  相似文献   

4.
Nickel–tungsten multi-walled carbon nanotubes (Ni–W/MWCNTs) nanocomposite coatings were co-electrodeposited in the ammonium-free bath by means of constant direct current coulometry. The results indicate that the amount of MWCNTs incorporated into the nanocomposite coatings has a key role in the improvement of their microhardness and corrosion resistance. The corrosion behavior of the coatings was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy methods in three corrosive media of 3.5 wt% NaCl, 1.0 M NaOH, and 0.5 M H2SO4. The experimental data of the corrosion current density (jcorr), corrosion rate (CR), the polarization resistance (Rp), and microhardness indicate that the presence of MWCNTs in coatings improves the quality of those coatings. The surface morphology of the coatings and the elemental analysis data were obtained by scanning electron microscopy and energy dispersive X-ray microanalysis respectively. As the results showed, the coatings were uniform and crack-free in the presence of 5.3 wt% carbon. Also, a microhardness test revealed that the nanocomposite coating containing 5.3 wt% carbon obtained in an ammonium-free bath which provided the higher content of tungsten had the highest hardness value among others.  相似文献   

5.
20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.  相似文献   

6.
通过两步法制备了CoNi/g-C3N4/GQDs三元复合纳米胶囊,利用XRD、SEM、FT-IR对其物相组成和微观形貌进行了详细表征,并对材料在1~18 GHz的微波电磁参数和吸波性能进行了测试和分析。结果表明,类海胆状的CoNi颗粒可以保证其复磁导率在较高水平,同时g-C3N4和GQDs在CoNi核心表面的复合可以通过界面偶极和本征偶极的互补性调控,调制微波介电特性和损耗。在L-Ku频段范围内,CoNi/g-C3N4/GQDs三元纳米胶囊通过介电调制的方式,极大地改善了电磁阻抗,获得了宽频吸收效果和吸波性能增强,在f=12.94 GHz和d=2.4 mm时,复合材料的反射损耗(RL)最小值达到-33.45 dB,当材料厚度为2.6 mm时,有效吸收频宽(RL<-10 dB)达到3.5 GHz。  相似文献   

7.
Multi-walled carbon nanotube (MWCNT)-reinforced copper (Cu) nanocomposite coatings were successfully deposited on aluminum (Al) substrate by a cold spraying process at a low pressure. The microstructure and the Raman spectrum of the low-pressure-cold-sprayed MWCNT–Cu nanocomposite coating showed that the MWCNTs maintained their tube structure in the Cu matrix, even though structural damage to the MWCNTs increased slightly. MWCNT–Cu nanocomposite-coated Al exhibits higher thermal diffusivity than pure-Cu-coated Al with a comparable hardness. The higher thermal diffusivity of the MWCNT–Cu coating could be explained by the dispersion of MWCNTs within the clean and closed CNT/Cu interfaces, which were achieved with the aid of compressive stress during the cold spraying.  相似文献   

8.
宿辉  曹茂盛 《表面技术》2020,49(2):81-87
目的提高(SiC)P的吸波性能。方法采用低成本、环保型的化学镀镍方法对(SiC)P表面进行修饰,设计了氧化、亲水、敏化、活化系列增强前处理工艺,确定了(SiC)P表面修饰的最佳工艺流程。用SEM、EDS、XRD等分别表征了修饰前后(SiC)P形貌、成分、物相的改变,采用波导法测定了修饰后碳化硅复合粉体的介电性能,并以其为吸波剂在铝板上制备了吸波材料。结果修饰后,获得了镀层连续、无光滑(SiC)P裸露的较高质量的碳化硅复合粉体(简写为(Ni/SiC)P)。(Ni/SiC)P较原粉(SiC)P,其形貌、组成、结构发生了明显改变,且介电常数、介电损耗、吸波性能明显增强,其中,介电常数的实部增强约为22%,虚部增强约为20%。涂覆1层(Ni/SiC)P涂料,在17.12 GHz时,RL=−15.47 dB,大于涂敷2层原粉(SiC)P涂料的吸收效果。涂覆2层(Ni/SiC)P涂料,在16.11 GHz时,RL=−23.51 dB。结论采用低成本、环保型方法实现了(SiC)P表面高质量修饰,修饰后,复合颗粒(Ni/SiC)P的介电性能及吸波性能均明显提高。  相似文献   

9.
Blends of polystyrene with polyaniline (PANI) coated multiwalled carbon nanotubes (MWCNTs) were designed which inherit dielectric and magnetic attributes from PANI and MWCNT respectively. The high resolution transmission electron microscopy image shows the PANI coating over MWCNT containing entrapped Fe catalyst. These blends show absorption dominated total shielding effectiveness (SET) of ?45.7 dB (>99.99% attenuation) in the 12.4–18.0 GHz range, suggesting their utility for making efficient microwave absorbers. The enhanced SET was ascribed to optimization of conductivity, skin-depth, complex permittivity and permeability. A good agreement between theoretical and experimental shielding measurements was also observed.  相似文献   

10.
碳纳米管复合水性丙烯酸涂层的腐蚀性能研究   总被引:3,自引:2,他引:1  
目的制备碳纳米管复合水性丙烯酸涂层,探索分析碳纳米管含量对涂层力学和防腐性能的影响规律。方法采用高速球磨方式制备3%,1%,0.5%三种含量(以质量分数计)的碳纳米管复合涂层,对涂层附着力、耐冲击性、耐弯曲性等力学性能进行测试,以电化学阻抗技术来评价碳纳米管复合涂层的防腐性能。结果添加碳纳米管显著提高了涂层的附着力,并且随着碳纳米管含量的增加,附着力上升;其他力学性能,如耐冲击性、耐弯曲性,在不同含量下均保持良好。对改性和未改性的涂层进行了电化学阻抗测试,其中1%的碳纳米管涂层电化学性能最优,在浸泡36 h后,未改性涂层低频区阻抗模值|Z|0.01为2.5×103Ω·cm2,0.5%的碳纳米管涂层为1.1×106Ω·cm2,1%的为1.4×108Ω·cm2,3%的为7×102Ω·cm2。结论由于碳纳米管本身的纳米效应,在较低含量时即可提高涂层的性能,并存在最优含量,超过此含量后性能有所下降。  相似文献   

11.
通过喷雾干燥法制备MoSi2包覆Al2O3的壳核结构混合粉,利用该混合粉以等离子喷涂技术制备MoSi2/Al2O3复合涂层材料。研究MoSi2/Al2O3质量比涂层材料的力学和介电性能的影响。结果表明:随着MoSi2含量从0增加到45%,复合材料的抗弯强度和断裂韧性分别从198MPa和3.05MPa·m1/2增加到324MPa和4.82MPa·m1/2,随后又降到310MPa和4.67MPa·m1/2。在8.2-12.4GHz微波频率波段内,随着MoSi2含量的增加,复合材料的介电损耗增加,而介电常数的实部却呈减小趋势。这主要是由于MoSi2颗粒熔化后的凝聚及导电网络结构的形成导致电导率的增加引起的。  相似文献   

12.
Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating   总被引:1,自引:0,他引:1  
The antibacterial behavior of HA-Ag (silver-doped hydroxyapatite) nanopowder and their composite coatings were investigated against Escherichia coli (DH5α). HA-Ag nanopowder and PEEK (poly-ether-ether-ketone)-based HA-Ag composite powders were synthesized using in-house powder processing techniques. Bacteria culture assay of HA-Ag nanopowder and their composite powders displayed excellent bacteriostatic activity against E. coli. The antibacterial activity increased with increasing concentration of HA-Ag nanoparticle in these composite powders. These nanocomposite powders were subsequently used as feedstock to generate antibacterial coatings via cold spray technology. The ratios of HA-Ag to PEEK in their composite powders were 80:20, 60:40, 40:60, and 20:80 (wt.%). Microstructural characterization and phase analysis of feedstock powders and as-deposited coatings were carried out using FESEM/EDX and XRD. Antibacterial nanocomposite HA-Ag/PEEK coatings were successfully deposited using cold spraying parameters of 11-12 bars at preheated air temperature between 150 and 160 °C. These as-sprayed coatings of HA-Ag/PEEK composite powders comprising varying HA-Ag and PEEK ratios retained their inherent antibacterial property as verified from bacterial assay. The results indicated that the antibacterial activity increased with increasing HA-Ag nanopowder concentration in the composite powder feedstock and cold-sprayed coating.  相似文献   

13.
The mechanical and tribological behavior and microstructural evolutions of the Ni(Al)-reinforced nanocomposite plasma spray coatings were studied. At first, the feedstock Ni(Al)-15 wt.% (Al2O3-13% TiO2) nanocomposite powders were prepared using low-energy mechanical milling of the pure Ni and Al powders as well as Al2O3-13% TiO2 nanoparticle mixtures. The characteristics of the powder particles and the prepared coatings depending on their microstructures were examined in detail. The results showed that the feedstock powders after milling contained only α-Ni solid solution with no trace of the intermetallic phase. However, under the air plasma spraying conditions, the NiAl intermetallic phase in the α-Ni solid solution matrix appeared. The lack of nickel aluminide formation during low-energy ball milling is beneficial hence, the exothermic reaction can occur between Ni and Al during plasma spraying, improving the adhesive strength of the nanocomposite coatings. The results also indicated that the microhardness of the α-Ni phase was 3.91 ± 0.23 GPa and the NiAl intermetallic phase had a mean microhardness of 5.69 ± 0.12 GPa. The high microhardness of the nanocomposite coatings must be due to the presence of the reinforcing nanoparticles. Due to the improvement in mechanical properties, the Ni(Al) nanocomposite coatings showed significant modifications in wear resistance with low frictional coefficient.  相似文献   

14.
The hierarchical MoS2/CoNi composites were successfully synthesized by a two-step hydrothermal method. The large surface area of the MoS2 enhances the dispersivity of the CoNi nanoparticles and the formation of abundant MoS2/CoNi interfaces, which make an important contribution to the dielectric loss, and the introduction of the CoNi improves impedance matching and introduces magnetic loss, which can improve the absorption performance to electromagnetic waves. Through the calculation of the electromagnetic parameters, the minimum reflection loss (RL) value of the MoS2/CoNi composites achieves -41.44 dB at 13.53 GHz under a thickness of 2.0 mm and the corresponding effective absorption bandwidth (RL below -10 dB) is 5.6 GHz. The MoS2/CoNi composite has the potential to be applied to microwave absorption due to its strong absorption and wide bandwidth.  相似文献   

15.
目的制备吸波性能优异的碳基复合吸波涂层。方法采用液相法在导电炭黑(CB)体系中原位生长还原氧化石墨烯(RGO)材料,合成了CB/RGO复合吸收剂,并以环氧树脂为基体制备了CB/RGO复合涂层。利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对制备的CB/RGO复合吸收剂进行微观结构表征,研究了吸收剂填充量和厚度对涂层电磁性能的影响规律。结果微观结构分析表明,CB以一种类似“葡萄状”的结构形态附着在石墨烯片层之间,在其表面实现包覆性生长,分散均匀且具有较好的附着力;制备的CB/RGO复合涂层质地均匀,密度仅为1.1 g/cm^3,兼具轻质柔性的特征。微波反射率测试结果显示,在高填充量3.0%和3.7%下,涂层均未表现出明显的强电磁吸收能力,而在低填充量1.6%和2.3%下,涂层表现出十分优异的微波吸收性能。结论当填充量为2.3%、厚度为1.9 mm时,涂层表现出最佳的吸波性能,最大吸波强度为−17.1 dB,有效吸波频宽达到6.63 GHz,覆盖整个测量频段的66.3%,显示出良好的宽频吸波性能。另外,当厚度为2.5 mm时,填充量为2.3%的涂层实现了雷达波在X波段的微波全吸收。  相似文献   

16.
用溶胶-凝胶法制备La1-xKxMnO3粉晶,用X射线衍射仪和扫描电镜表征样品的晶体结构和微观形貌,用微波矢量网络分析仪测试了该样品在2~18 GHz微波频率范围的复介电常数和复磁导率,并计算损耗角正切及微波反射率,分析K掺杂量和样品厚度对体系微波吸收性能的影响及微波损耗机制。结果表明:晶体结构为钙钛矿型,颗粒形貌为不规则椭球状或短棒状;当样品厚度为2.40 mm、x=0.3时,吸收峰值为27.1 dB,10 dB以上有效吸收频带宽度达10.6 GHz。纳米La1-xKxMnO3兼具介电损耗和磁损耗,介电损耗相对较强。磁损耗因子和介电损耗因子随微波频率的变化相反,是基体中铁磁与反铁磁团簇在微波电磁场作用下相互转变引起。  相似文献   

17.
Ni(Co/Zn/Cu)Fe_2O_4/SiC@SiO_2, a microwave absorber, was prepared by the sol-gel method. The phase structure and the morphology of the microwave absorbers were characterized by X-Ray Diffraction(XRD) and scanning electron microscopy(SEM), respectively. Laser sizer(LS) and X-ray photoelectron spectroscopy(XPS) analysis show the core-shell structure of SiC@SiO_2. Coaxial method was used to measure the microwave absorption properties of the prepared composites in the frequency range of 2-18 GHz. When 70 wt% SiC is wrapped by 30 wt% SiO_2,and 50 wt% NiFe_2O_4 is added into 50 wt% SiC@SiO_2, the as-prepared powders are found to have advanced microwave absorption properties with a minimum reflection loss(RL) of -32.26 dB at about 6.08 GHz, and the available bandwidth is approximately 2.1 GHz when the RL is below -10 dB.  相似文献   

18.
A variety of yttria-stabilized zirconia (YSZ) coatings have been attained by plasma spray physical vapor deposition (PS-PVD) with fine YSZ powders at high power. The coating structures were found to change significantly with the powder feeding rates but less with the substrate temperature and the rate of the substrate rotation, and a porous feather like structure was attained at 500 Torr (666.6 millibar) and a rate of >200 μm/min. Such a coating produces porosity reaching >50%, thermal conductivity as small as 0.5 W/mK and lower infra-red transmittance compared to the sprayed splat coating with identical thickness.  相似文献   

19.
La0.8Ba0.2MnO3 nano-particles were synthesized by sol-gel process, and the crystal structure and morphology' were characterized by XRD and SEM, respectively. The complex permittivity and permeability were determined by microwave vector network analyzer in the frequency range of 2-18 GHz. The relationship between reflection coefficient and microwave frequency of La0.8Ba0.2 MnO3 was calculated based on measured data. The results show that the average diameter of La0.8Ba0.2MnO3 crystal powders is about 80 nm and the crystal structure is perovskite when being calcined at 800 ℃ for 2 h. The microwave absorbing peak is 13 dB at 6.7 GHz and the effective absorbing bandwidth above 10 dB reaches 1.8 GHz for the sample with the thickness of 2.6 mm. The microwave absorption can be attributed to both the dielectric loss and the magnetic loss from the loss tangents of the sample, but the former is greater than the latter.  相似文献   

20.
Next Generation Thermal Barrier Coatings for the Gas Turbine Industry   总被引:2,自引:0,他引:2  
The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号