共查询到19条相似文献,搜索用时 62 毫秒
1.
针对单一神经网络模型预测误差波动大、精度不高等问题,提出基于SVM、BP和Elman神经网络基本模型的加权平均集成需水预测模型。首先,利用相关分析和ADF单位根检验,选取需水预测主要影响因子。为避免模型过度拟合,引入虚拟维,并针对BP、Elman神经网络标准算法收敛速度慢、易陷入局部极值的不足,采用自适应动量算法改进BP和Elman神经网络标准算法,依次构建SVM、BP和Elman需水预测单一模型,并对上海市2002—2011年需水量进行预测;最后,基于加权平均方法对各单一模型预测结果进行综合集成。结果表明:利用加权平均集成模型对上海市2002—2011年需水量进行预测的平均相对误差绝对值为1.8004%,最大相对误差绝对值为3.6995%,精度和泛化能力均大幅优于各单一模型。说明本研究建立的加权平均集成模型用于需水预测是合理可行和有效的,它综合了各单一模型的优点,有效避免了单一模型预测误差过大和不稳定的缺点,具有预测精度高、泛化能力强、误差变化幅度不大等特点。 相似文献
2.
杨洪 《水资源与水工程学报》2014,25(3):213-219
为提高径流预测预报的精度和泛化能力,建立了基于3种基本改进算法的BP神经网络集成预测模型。利用ADF单位根检验方法、自相关分析方法确定径流时间序列的平稳性和模型的输入向量。针对BP神经网络标准算法收敛速度慢、易陷入局部极值的缺陷,采用自适应动量梯度法、共轭梯度法和Levenberg-Marquardt法分别改进BP神经网络标准算法,依次构建基于3种改进算法的BP神经网络模型对文山州南利河董湖水文站年径流进行预测,并构建GA-BP预测模型作为对比模型;采用加权平均方法对各单一模型预测结果进行综合集成。结果表明:集成模型对南利河2001-2005年径流预测平均相对误差绝对值为4.67%,最大相对误差绝对值为7.11%,精度和泛化能力均优于各单一模型和GA-BP模型。集成模型克服了单一模型预测精度不高和误差不稳定的缺点,具有较好的预测精度和泛化能力,是提高径流预测预报精度的有效方法。 相似文献
3.
为进一步提高径流预测精度和泛化能力,根据回归支持向量机(SVR)特性及基本原理,提出考虑不同影响因子(输入向量)的SVR集成预测模型,以云南省南盘江西桥站1961—2007年径流预测为例进行实例研究。首先,利用相关分析法选取年径流预测的若干影响因子,依次构建不同影响因子的SVR单一模型对研究实例进行预测,并构建对应的RBF模型作为对比预测模型;然后,采用加权平均和简单平均2种方法对具有较好预测精度和互补性的单一模型的预测结果进行综合集成。结果表明基于SVR的加权平均和简单平均2种集成模型径流预测的平均相对误差绝对值分别为1.27%和1.54%,最大相对误差绝对值分别为2.99%和2.74%,其精度和泛化能力均大幅优于各单一模型以及基于RBF的加权平均和简单平均集成模型,表明加权平均SVR和简单平均SVR集成模型具有较高的预测精度和泛化能力。相对而言,加权平均集成模型赋予了预测效果好的模型更大的权重,预测精度和泛化能力均优于简单平均集成模型。预测模型和方法可为相关预测研究提供参考和借鉴。 相似文献
4.
回归支持向量机模型及其在年径流预测中的应用 总被引:1,自引:0,他引:1
魏胜 《西北水资源与水工程》2014,(2):213-217
研究交叉验证(CV)SVR年径流预测模型,以云南省清水江革雷站为例进行实例分析。利用SPSS软件选取年径流影响因子,确定输入向量;采用CV方法搜寻SVR惩罚因子C和核函数参数g,构建CV-SVR多元变量年径流预测模型,并构建GA-BP、传统BP模型作为对比模型。利用所构建的模型对实例进行预测。结果表明:CVSVR模型对实例后15年年径流预测的平均相对误差绝对值和最大相对误差绝对值分别为3.4596%、9.3035%,预测精度和泛化能力均优于GA-BP、传统BP模型,表明CV能有效搜寻SVR惩罚因子C和核函数参数g。CV-SVR模型具有预测精度高、泛化能力强以及算法稳定等特点。 相似文献
5.
代兴兰 《水资源与水工程学报》2014,25(6):231-235
为克服最小二乘支持向量机(LSSVM)依赖人为经验选择学习参数的不足,利用遗传优化算法(GA)选择LSSVM惩罚因子C和核函数参数σ2,构建GA-LSSVM年径流预测模型,并构建LSSVM、GA-BP和传统BP模型作为对比,以云南省河边水文站年径流预测为例进行实例研究,利用实例前30 a和后22 a资料分别对各模型进行训练和预测。结果表明:GA-LSSVM模型对实例后22 a年径流预测的平均相对误差绝对值和最大相对误差绝对值分别为3.13%、8.66%,预测精度优于LSSVM、GA-BP和传统BP模型。GA算法全局寻优能力强,利用GA算法优化得到的LSSVM学习参数可有效提高LSSVM模型的预测精度和泛化能力。 相似文献
6.
崔东文 《水利水电科技进展》2019,39(4):41-48
采用5个标准测试函数对多组群教学优化(MGTLO)算法进行仿真验证,并将仿真结果与基本教学优化(TLBO)算法、混合蛙跳算法(SFLA)、差分进化(DE)算法和粒子群优化(PSO)算法的仿真结果进行对比。利用MGTLO算法搜寻基于广义回归神经网络(GRNN)、径向基神经网络(RBF)、支持向量机(SVM)模型单元的组合模型的最佳模型参数和组合权重系数,提出MGTLO-GRNN-RBF、MGTLO-GRNN-SVM、MGTLO-RBF-SVM、MGTLO-GRNN-RBF-SVM 4种组合预测模型,以新疆伊犁河雅马渡水文站和云南省某水文站年径流量预测为例进行了实例分析,并将预测结果与MGTLO-GRNN、MGTLO-RBF、MGTLO-SVM和GRNN、RBF、SVM 6种单一模型的结果进行对比分析。结果表明:MGTLO算法寻优精度优于TLBO、SFLA、DE和PSO算法,具有较好的收敛速度和全局极值寻优能力;组合模型融合了MGTLO算法与GRNN、RBF、SVM模型单元的优点,在预测精度、泛化能力等方面均优于单一模型;MGTLO算法能有效优化各组合模型的相关参数和权重系数,MGTLO-GRNN-RBF-SVM模型预测精度最高。 相似文献
7.
改进Elman神经网络在径流预测中的应用 总被引:2,自引:0,他引:2
崔东文 《水利水运工程学报》2013,(2):71-77
针对传统静态前馈神经网络动态性能较差的缺点,提出一种基于遗传算法(GA)优化Elman神经网络连接权值的GA-Elman多元变量年径流预测模型.以新疆伊犁河雅马渡站径流预测为例进行实例分析,并构建传统Elman,传统BP和GA-BP多元变量年径流预测模型作为对比模型,预测结果与文献IEA-BP网络模型预测结果进行对比.结果表明:①GA-Elman模型的拟合及预测效果略优于文献IEA-BP模型,该模型用于多元变量年径流预测是合理可行的,具有较好的预测精度和泛化能力.②在相同网络结构及传递函数等条件下,GA-Elman模型的预测精度和泛化能力优于GA-BP模型,传统Elman模型优于传统BP模型,表明具有适应时变特性的Elman反馈动态递归网络预测性能优于BP网络;GA能有效优化Elman神经网络连接权值,使网络的预测精度和泛化能力有了较大提高. 相似文献
9.
10.
RBF神经网络模型在金沟河流域径流预测中的应用 总被引:1,自引:0,他引:1
河川径流时间序列是一个复杂的非线性系统,使传统的预测方法难以描述其变化规律。将金沟河流域八家户站的1957年至2003年的年径流实测数据作为样本,转化为径流差后,进行归一化处理及自相关函数分析,在MATLAB环境下建立径向基神经网络径流预测模型。结果表明:与传统的BP神经网络预测比较,利用径向基神经网络模型对径流序列进行预测具有更高的精度和更短的运算时间,是径流预测的一种有效方法。 相似文献
11.
改进的BP网络模型及其在日径流预测中的应用 总被引:2,自引:0,他引:2
尝试了基于MATLAB6.5的人工神经网络工具箱在水文日径流预测中的应用,并采用贝叶斯正则化方法改进BP网络算法,从而提高了BP网络的推广能力。将该模型应用于大渡河流域日径流的预测,取得了较好的预测效果。 相似文献
12.
针对径流时间序列的非线性和多时间尺度特性,应用A Trous算法对盘石头水库的月径流序列进行了分析.在此基础上,将小波分析与人工神经网络相结合,建立了组合预测模型,并给出构造模型的一般步骤及关键算法.针对一般BP算法收敛速度慢、易陷入局部极小值的缺陷,提出了基于改进共轭梯度法的BP算法.实践表明:基于小波分析的人工神经网络模型在月径流模拟过程中具有很好的仿真能力,训练后的模型具有较高的精度. 相似文献
13.
运用拓扑灰预测模型对河川径流量进行预测,以沂河为例,进行验证分析,结果表明模型的拟合效果好,估值具有很高的精确性和可靠性,适宜于对河川径流量进行预测。 相似文献
14.
运用拓扑灰预测模型对河川径流量进行预测,以沂河为例,进行验证分析,结果表明模型的拟合效果好,估值具有很高的精确性和可靠性,适宜于对河川径流量进行预测. 相似文献
15.
16.
17.
18.