首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为改善做行波运动的翼型的能量吸收特性,基于计算流体力学方法,分析波长(0.6L~1.4L,L为中弧线长度)、振幅(0.02L~0.1L)与无量纲波速(0.1~0.9)对做行波运动的NACA4、NACA63与NACA65系列不同最大厚度的翼型以及行波运动板的能量吸收特性的影响。研究表明:当运动参数相同时,同一系列翼型的获能效率随最大厚度的增大而减小,且行波板的获能效率最高;当行波振幅与无量纲波速一定时,厚度相同的不同系列翼型的获能效率均随波长的增大而减小,且不同系列翼型的获能效率基本相当;当行波波长与无量纲波速一定时,厚度相同的不同系列翼型的获能效率均随振幅的增大而增大;当行波波长与振幅一定时,厚度相同的不同系列翼型的获能效率均随无量纲波速的增大而先增大后减小,且在无量纲波速c=0.45左右达到最大值。  相似文献   

2.
针对经典的S809翼型,耦合基于低速预处理的流场求解方法和序列二次规划方法,开展针对翼型升阻比的翼型气动外形优化设计研究。优化结果显示优化翼型具有较大的翼型前缘半径和较平坦的上表面。数值计算结果表明,优化翼型在设计点1的状态下升阻比提高43.3%,在设计点2的状态下升阻比提高48.9%。进一步数值验证表明,优化翼型在雷诺数为5.0×105状态下的最大升力系数从S809翼型的1.140增大到1.297,在雷诺数为1.0×106状态下的最大升力系数从1.236增大到1.418。在优化翼型的基础上,开展翼型气动外形人工修型研究,数值模拟表明修型翼型能更好地消除气流分离,从而进一步增大翼型升力系数、减小翼型阻力系数。  相似文献   

3.
以马格努斯翼型为研究对象,采用数值分析方法,研究低雷诺数条件下马格努斯效应关键参数(周速比、间隙、半径及位置)对翼型边界层流动及升阻性能的影响规律;基于拉丁超立方和Kriging模型,建立周速比、半径、间隙和位置多因素与翼型升阻特性的隐型非线性耦合响应关系模型,量化马格努斯效应影响;采用遗传算法全局寻优获得优化马格努斯翼型。结果表明,马格努斯效应对低雷诺数翼型升阻气动特性影响显著,半径对翼型升阻比影响最大,周速比影响稍弱,位置影响最小;升阻比与周速比正相关,与半径大小、间隙及位置负相关;周速比为1.33、间隙为0.003C、半径为0.046C时翼型最大升阻比较基准翼型提高40.31%,失速攻角由10°延迟到14°。  相似文献   

4.
相关研究表明多孔尾缘在降低翼型噪声的同时,对其气动性能也有一定影响,且穿孔几何尺寸和位置是影响尾缘翼型噪声与气动特性的重要参数。针对NACA65019翼型,在来流雷诺数Re=2×105条件下,采用计算流体力学方法研究具有不同穿孔孔径和位置的尾缘双穿孔翼型绕流特征和噪声特性,并通过部分实验验证模拟的可靠性。研究结果表明:尾缘双穿孔翼型在小攻角下,升阻比较原翼型有较明显的提升,当来流攻角大于12 °后,升阻比开始小于原翼型;在一定来流攻角范围内,尾缘双穿孔翼型可延迟吸力面分离,降低吸力面边界层厚度;边界层厚度的降幅与穿孔孔径、穿孔位置密切相关,最大可达28.8%。根据相关声学理论模型,分析了穿孔孔径及位置对尾缘双穿孔翼型噪声特性的影响,经数值研究表明:α=6°时,在100~7 kHz频率范围,不同的尾缘双穿孔翼型相较于原翼型噪声降低最高可达10.7 dB;d=1.0 mm和Xc/c=0.82翼型效果最佳。  相似文献   

5.
以DU93-W-210风力机专用翼型为研究对象,采用风洞实验方法研究4组涡发生器(VGs)间距(S=5H、7H、13H、19H,H为VGs高度)对翼型气动性能的影响规律。风洞实验结果发现:在洁净翼型失速攻角(8°)之前,涡发生器对翼型的升力系数影响较小。而对于阻力系数及升阻比,当间距S=5H、7H时会使翼型的阻力系数增加,其中S=5H时阻力最多增加27%,升阻比降低19%。间距S=13H、19H时使翼型阻力系数降低,其中S=13H时阻力最多降低70%,升阻比最多增加160%;在翼型失速攻角(8°)之后,涡发生器均能增加翼型升力、降低阻力、增加升阻比,其中S=5H时翼型升力系数最多增加48%,增加失速攻角近10°,且在失速攻角之后,S=5H时翼型升阻比增加最多。故加装涡发生器不一定在全攻角范围内均增加翼型升阻比,但会增加翼型最佳升阻比的攻角范围。所以,涡发生器存在最佳间距,若从最大升力系数来判断,当间距S=5H时效果最佳。若从最大升阻比来看,当间距S=13H时效果更佳。  相似文献   

6.
研究了不同喷气角度对带有喷气襟翼的风力机翼型气动特性的影响,采用计算流体力学(CFD)方法对NACA4424翼型在不同喷气角度下进行了数值模拟。其中,喷气角度范围为-25°~10°,间隔为5°,计算了各种工况下的翼型气动性能并与原翼型气动性能作比较。数值模拟结果表明:喷气角度的改变,主要改变的是阻力系数;在相同喷气速度下,随着喷气角度的减小,翼型升阻比先增加后减小,当喷气角度为-20°时,可达到最大升阻比。  相似文献   

7.
在一定的运动参数条件下,行波运动可以从流水或风中吸取能量。以NACA0012翼型作为行波运动鱼体二维简化模型的原始翼型,采用数值模拟的方法研究波长及波速对行波运动获能特性的影响。结果表明:当波长不变时,随着无量纲波速的增大,行波运动从流水中吸收的能量(无量纲侧向功率)和能量利用率先增大后减小,并存在一个最佳波速使得无量...  相似文献   

8.
为研究格尼襟翼对风力机专用翼型DU93-W-210气动性能的影响,在有/无格尼襟翼情况下进行风洞实验(雷诺数为1×10~6)。实验研究高度为1.5%C、2.0%C、2.5%C格尼襟翼增升效果。研究表明:格尼襟翼能有效提高翼型的升力系数,襟翼高度越高,升力系数越大,相应的阻力系数也有所增大。格尼襟翼在中、高升力系数情况下效果较好;高度为1.5%C的格尼襟翼可获得较大升阻比。为了进一步减少阻力,对平板格尼襟翼开30°、45°、60°锯齿。结果表明,平板襟翼开锯齿能减小阻力;30°锯齿襟翼能在较大范围内增大升阻比,增升效果最佳。  相似文献   

9.
为研究风沙环境下流动控制方式对于NACA 0012翼型气动性能和冲蚀磨损的影响,通过在风力机翼型前缘布置微小圆柱来控制气流流动,采用离散项模型和SST k-ω湍流模型对控制翼型进行数值计算。结果表明:攻角较小时,微小圆柱处于X=0.04、Y=-0.03位置时控制效果最佳,可抑制流动分离,相比原翼型升阻比提高149.72%;微小圆柱处于X=0.02、Y=-0.02位置时翼型冲蚀磨损的减小量最大,相比原翼型减小97.66%;微小圆柱处于最优区域时翼型升阻比提高的同时冲蚀磨损量也会减小。  相似文献   

10.
为提升垂直轴风力机翼型综合气动性能,建立针对多运行工况的翼型优化设计方法。采用CST参数化方法表征翼型几何外形,通过优化的拉丁超立方抽样方法进行空间采样,利用CFD方法计算翼型气动力,并建立径向基函数神经网络代理模型,以翼型小攻角下升力和失速攻角下升阻比最优为设计目标,采用多目标遗传算法在代理模型上进行寻优,获得适用于垂直轴风力机的专用翼型以提高其在不同尖速比下的旋转力矩。对风力机常用翼型NACA0018进行优化,结果表明:以翼型失速攻角和最大升阻比攻角为优化目标,不仅提高了单翼型的升力系数与升阻比,而且将优化翼型应用于垂直轴风力机时还可提升使整机力矩系数。  相似文献   

11.
风力机复杂运行环境使叶片常处于失速环境,导致翼型升力骤降,严重影响风力机气动性能.为改善翼型流动分离,延缓失速,对凹槽-襟翼对翼型动态失速特性作用效果开展研究,并利用计算流体力学方法分析不同折合频率与翼型厚度时凹槽-襟翼对翼型气动性能的影响.结果表明:俯仰振荡过程中,凹槽-襟翼可有效提升翼型吸力面流速,降低失速攻角下逆...  相似文献   

12.
在西北工业大学NF-3低速风洞二元实验段开展翼型俯仰振荡运动动态气动性能深入研究。实验模型为展向三段式测力模型,测力仅在模型中段进行以减小风洞侧壁干扰的影响。实验中采集模型的转动瞬态迎角、计算模型中段的惯性力和惯性力矩、并从天平采集数据中扣除以修正模型惯性对结果的影响。结果表明,迎角超过正向或负向静态失速迎角是升力系数和俯仰力矩系数产生大的迟滞环的必要条件。随着振荡缩减频率增大,动态失速会推迟,升力系数迟滞环增大,阻力系数增大,最大迎角附近的俯仰力矩系数减小。在迎角小于静态失速迎角或超过不大的迎角范围,随着缩减频率的增大,翼型振荡运动俯仰力矩系数上行时减小,下行时增大。随着振荡振幅的增大,翼型振荡运动动态升力系数和俯仰力矩系数的迟滞环增大。随着平均迎角的增大,翼型迎角更多地进入正向失速区,升力系数迟滞环增大,俯仰力矩系数最小值变小。雷诺数对升力系数、阻力系数和俯仰力矩系数迟滞环无明显影响;但是,在翼型模型下行过程,随着雷诺数的增大,升力恢复提前,同时迟滞环随雷诺数增大而减小。  相似文献   

13.
为得到高气动性能、低噪声的风力机专用翼型,基于参数化建模翼型,研究前缘外形对风力机翼型气动性能及气动噪声的影响规律。通过分离涡模拟方法和声学类比方程建立噪声预测方法。针对非对称翼型S809通过样条函数参数化处理前缘改形进行气动噪声计算。结果表明:翼型压力面前缘加厚,对翼型升阻力系数无明显影响,但大攻角时翼型周围压力分布均匀,流动相对稳定,且气动噪声声压级低于原始翼型,随压力面厚度增加气动噪声越大;吸力面加厚使得翼型升力系数增大,阻力系数减小,能抑制翼型失速时尾缘涡与前缘涡的生成,变形量越大气动噪声越小;翼型前缘上弯,翼型在失速区升力系数减小,阻力系数增大,流动越加不稳定,声压级随着攻角的增加呈递增趋势;翼型前缘下弯,翼型处于失速区升力系数增大,阻力系数减小,能抑制流动分离,未生成前缘涡和尾缘涡,当前缘下弯不变时,随加厚厚度增加翼型声压级呈减小趋势,且前缘下弯翼型声压级小于前缘上弯。  相似文献   

14.
表面粗糙度对风力机翼型性能的影响   总被引:3,自引:5,他引:3  
讨论了风力机专用叶片上局部增加表面粗糙度,在不同分布位置、不同当量大小的条件下对叶片气动性能影响的实验研究。首先,探讨了叶型表面粗糙度的形成机理和对气动性能影响的初步原理。其次,设计了在风洞实现局部增加表面粗糙度对翼型性能影响的实验条件和实验方案。最后,对风力机专用叶型进行的叶片表面局部增加粗糙度的风洞实验,结果证明了在叶片压力面尾缘通过适当增加一定宽度、一定粗糙度的粗糙带可以增大叶片的有效升力系数。  相似文献   

15.
通过研究尾缘气动弹片对翼型动态失速特性影响,提出一种基于气动弹片的主动控制策略,使其于大攻角时抬起,小攻角时闭合。并采用计算流体动力学方法对比分析主动式气动弹片对不同厚度翼型抑制流动分离作用的效果。结果表明:对于薄翼型,发生动态失速时,气动弹片可延缓翼型尾缘涡旋与前缘主流涡的相互作用,减小翼型升力系数骤降幅度;随翼型厚度增加,流动分离点从翼型前缘转向后缘,气动弹片可有效分割较大分离涡,减轻流动分离程度,限制分离涡发展,同时抑制尾缘伴随小涡产生,提高翼型升阻比。  相似文献   

16.
基于翼型参数化方法对翼型S809进行4类不同的前缘修改,分别为前缘压力面加厚、前缘吸力面加厚、前缘上弯和前缘下弯,采用翼型设计分析软件Xfoil和商用CFD(Computational Fluid Dynamics)软件FLUENT分别对翼型气动参数和翼型周围流场进行计算。结果表明:翼型气动特性与流场特性受翼型压力面外形变化影响较小;在研究范围内,翼型吸力面加厚使得翼型在失速区升力系数增加,阻力系数减小;翼型前缘上弯使得翼型在大攻角工况下升力系数减小,阻力系数增大,且使翼型提前失速;在一定范围内翼型前缘下弯,使得翼型升力系数增大,阻力系数减小,且延迟失速。  相似文献   

17.
The designers of horizontal axis wind turbines and tidal current turbines are increasingly focusing their attention on the design of blade sections appropriate for specific applications. In modern large wind turbines, the blade tip is designed using a thin airfoil for high lift : drag ratio, and the root region is designed using a thick version of the same airfoil for structural support. A high lift to drag ratio is a generally accepted requirement; however, although a reduction in the drag coefficient directly contributes to a higher aerodynamic efficiency, an increase in the lift coefficient does not have a significant contribution to the torque, as it is only a small component of lift that increases the tangential force while the larger component increases the thrust, necessitating an optimization. An airfoil with a curvature close to the leading edge that contributes more to the rotation will be a good choice; however, it is still a challenge to design such an airfoil. The design of special purpose airfoils started with LS and SERI airfoils, which are followed by many series of airfoils, including the new CAS airfoils. After nearly two decades of extensive research, a number of airfoils are available; however, majority of them are thick airfoils as the strength is still a major concern. Many of these still show deterioration in performance with leading edge contamination. Similarly, a change in the freestream turbulence level affects the performance of the blade. A number of active and passive flow control devices have been proposed and tested to improve the performance of blades/turbines. The structural requirements for tidal current turbines tend to lead to thicker sections, particularly near the root, which will cause a higher drag coefficient. A bigger challenge in the design of blades for these turbines is to avoid cavitation (which also leads to thicker sections) and still obtain an acceptably high lift coefficient. Another challenge for the designers is to design blades that give consistent output at varying flow conditions with a simple control system. The performance of a rotating blade may be significantly different from a non‐rotating blade, which requires that the design process should continue till the blade is tested under different operating conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
现代水力机械叶片设计时采用的翼型大多为空气动力学翼型,而较少关注水流场与空气流场的差异及流质改变对翼型流动特性的影响,因此选取七种翼型,基于CFD软件,在高雷诺数、小攻角下,对翼型在水、空气两种流场中绕流的升阻力、表面涡量分布、速度场进行二维数值模拟计算,并分析了两种流场中的差异,提出了水、空气两种流场中升力、阻力系数的差异修正系数,推导了以水(气)流场试验数据表达的相同条件下气(水)流场运动方程。结果表明,气流场、水流场的差异对翼型升力系数的影响较小,对阻力系数及升阻比的影响较大;水流场中,翼型表面涡量不存在较大波动,分布更为均匀稳定,且分离点位置集中于翼型中段;水、空气流场的尾流低速区域面积之比能够较好地反映阻力系数的差异修正系数。研究成果可用于指导不同流场中的翼型设计。  相似文献   

19.
为改善做行波运动的行波板的能量吸收特性,基于计算流体力学方法,分析了波长系数(-0.1~0.3)和无量纲振幅(0.1~0.2)对做不等波长行波运动行波板能量吸收特性的影响。结果表明:相比于做等波长行波运动,做不等波长行波运动行波板的能量吸收效果更好;在较小的无量纲振幅下,沿流向线性增大波长,可以提高能量吸收效率;随着波长系数增大,能量吸收效率先升高再降低,存在最佳波长系数使得能量吸收效率最高达到69%;在较大的无量纲振幅下,随着波长系数的增大,能量吸收效率先降低再升高。  相似文献   

20.
为改善流动分离造成叶片气动效率降低,基于鸟鹰类翅膀羽毛在大范围流动分离时自适应弹起的特点,在翼型吸力面设置功能类似羽毛的弹片。弹片在未发生大范围流动分离时贴附翼型表面,使原始翼型轮廓发挥作用,并于攻角增大时弹起以改善翼型失速特性。以NREL S809为原始翼型,对不同攻角下多个弹片角度进行了数值计算,并对所得气动参数进行分析。研究表明:在大范围流动分离时,弹片可有效提高升阻比,最高达50%~60%;气流贴附弹片流动至其末端,从而抑制和拖延了涡的发展,进而提高了流场稳定性,使波动更规律且幅度更小;所研究攻角范围内,改善翼型气动性能的最佳弹片角度随攻角呈近似线性变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号