首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
厌氧氨氧化(Anammox)作为一种新型的自养脱氮工艺,由于其不需要外加碳源、污泥产量少、运行费用低等一系列优势,被认为是一种高效、经济的污水生物脱氮工艺。而纳米材料(nanomaterials,NMs)作为21世纪最有前途的材料,其广泛应用不可避免地会使纳米颗粒释放到水体中,从而对厌氧氨氧化污水脱氮处理产生影响。选取了污水中含有的若干典型纳米材料,结合现有文献,从长短期影响、毒性机理、微生物的抗毒机制等角度综述纳米材料对厌氧氨氧化过程的影响,旨在全面分析不同类型的纳米材料对厌氧氨氧化过程的作用机制,为提升厌氧氨氧化脱氮效率提供参考依据。  相似文献   

2.
利用厌氧氨氧化絮状污泥和厌氧颗粒污泥启动厌氧氨氧化颗粒污泥UASB反应器,通过调整进水基质浓度及上升流速培养富集厌氧氨氧化颗粒污泥。反应器经过140 d的运行,成功培养出厌氧氨氧化颗粒污泥,NH4+-N和NO2--N去除率分别达到96. 41%和99. 11%,总氮去除负荷可以达到0. 26 kg/(m3·d),并且ΔNO2--N/ΔNH4+-N和ΔNO3--N/ΔNH4+-N分别为1. 32±0. 02和0. 26±0. 01,符合厌氧氨氧化化学反应计量学规律。反应器启动过程中厌氧颗粒污泥经历了解体、重组,颜色由黑色变为灰色最终变为红色,经过160 d的运行后形成1~3 mm的厌氧氨氧化颗粒污泥。  相似文献   

3.
厌氧氨氧化工艺相比于传统脱氮工艺有明显的优越性,但由于工艺需要严格的条件控制,目前还没有广泛的应用。本文介绍了厌氧氨氧化工艺,探讨了其影响因素及在实际应用中会面临的问题,发现硝酸盐、醇类、DO和NO对厌氧氨氧化工艺都有抑制作用。通过研究者的大量研究,厌氧氨氧化工艺必将成为有前景的生物脱氮工艺。  相似文献   

4.
近年来我国经济发展迅速,与此同时经济带来的弊端就是对环境的污染。氮素过高是水体富营养化的主要原因,虽然氮是生物的必须元素,但含量过高就会污染水体,使水体富营养化,对人们的生产生活造成不便。厌氧氨氧化工艺作为新型脱氮工艺近年来发展迅速,在现阶段属于新型污水处理技术的研究热点,其作用对污水脱氮技术的革新有着重大意义。厌氧氨氧化工艺具有传统脱氮工艺不具备的优势,节能、绿色、高效,目前在国内外应用广泛。但是厌氧氨氧化工艺存在着许多问题,世代周期长,反应速度慢,菌种较为敏感,反应条件较为苛刻。综述了厌氧氨氧化的机理,菌种的分类,以及厌氧氨氧化的基本生理参数和影响因素,最后总结了国内外厌氧氨氧化工程实例应用的现状。  相似文献   

5.
陈海  玄思奇  张栋  王嘉斌 《市政技术》2022,(10):180-183+191
为探究磁性颗粒对厌氧氨氧化启动过程的影响,采用2个ASBR反应器进行实验,其中一个反应器不添加磁性颗粒,另一个反应器添加磁性颗粒,初步探明了磁场对ASBR反应器内氮转移过程的影响机理。通过小试方式对比研究了不同磁性颗粒投加量对于反应周期内氨氮和亚硝态氮去除效能以及脱氢酶活性的影响。结果表明,磁场的存在能够促进厌氧氨氧化启动过程中的优势菌落演替以及厌氧氨氧化菌的富集,有效缩短厌氧氨氧化的启动周期;投加30 g/L磁性颗粒可以有效提升微生物的活性,提高反应速率。  相似文献   

6.
《Planning》2022,(1):177-185
采用改进的升流式厌氧污泥床(UASB)反应器,在温度为30℃条件下,逐渐缩短HRT(水力停留时间)由9.6 d到0.9 d,经过160 d运行,成功培养出反硝化厌氧甲烷氧化与厌氧氨氧化耦合颗粒污泥,采用荧光原位杂交(FISH)分析、16S rRNA分析等方法研究颗粒结构和微生物组成特征。结果表明:耦合颗粒污泥的氨氮和亚硝酸盐的脱除速率分别为588.9和523 mg·L~(-1)·d~(-1),反硝化厌氧甲烷氧化活性达95.2 mg·L~(-1)·d~(-1),出水硝酸盐质量浓度小于40 mg·L~(-1),总氮去除率达92.5%;耦合颗粒污泥平均粒径为0.76 mm,与接种厌氧氨氧化颗粒污泥相比增加了1.46倍;反硝化厌氧甲烷氧化微生物主要位于耦合颗粒污泥外层,厌氧氨氧化菌位于耦合颗粒污泥内部;主要的厌氧氨氧化菌为Candidatus Brocadia,主要的反硝化厌氧甲烷氧化细菌为Candidatus Methylomirabilis,反硝化厌氧甲烷氧化古菌为Candidatus Methanoperedens。  相似文献   

7.
厌氧氨氧化技术应用的挑战与对策   总被引:3,自引:0,他引:3  
厌氧氨氧化可在缺氧条件下实现氨氮的高效去除,现已成功应用于高氨氮实际废水的处理,其容积氮去除速率高达9.5kgN/(m3·d)。但由于厌氧氨氧化菌生长缓慢,细胞产率低,厌氧氨氧化工艺的启动与运行较为困难,限制了其在全球的推广应用。目前,我国对该技术的研究主要处于实验室小试阶段,缺少中试及以上规模厌氧氨氧化工程的实际应用。以厌氧氨氧化工艺的工程化为目标,探讨了其在菌种、工艺及装置等方面存在的问题,提出了相应的控制对策,并在此基础上提出了厌氧氨氧化工艺工程应用的模式和产业化措施。  相似文献   

8.
试验从不同基因水平考察处理低氨氮废水的厌氧氨氧化颗粒污泥中功能微生物特性。基于16S rRNA基因仅划分了3个OTUs,均隶属于Brocadia,其中OTU 1占最大比例(89.5%);基于hzsB功能基因划分了14个OTUs,分别隶属于Brocadia(OTU 1~10,81.6%)、Kunenia(OTU 11,10.5%)和Jettenia(OTU 12~14,7.9%),在0.5~0.9 mm粒径区间菌种多样性最高。结合其他多样性指数结果可知,基于hzsB功能基因靶定的基因片段辨析率更高,能更好地对厌氧氨氧化菌进行生物多样性结构分析。基于优势的hzsB功能基因分析颗粒样品中厌氧氨氧化菌丰度达10~(11)copies/gVSS,占全细菌的比例为8%~10%。另外,在颗粒污泥逐渐增大过程中,厌氧氨氧化菌丰度先增大后减小,在0.5~0.9 mm粒径区间出现丰度最大值。说明颗粒化确实能实现厌氧氨氧化菌的有效富集和持留,但当增长到一定程度之后,维持良好的颗粒粒径、保证最优的传质效能,才能实现厌氧氨氧化菌高多样性、高丰度水平的维持与稳定。  相似文献   

9.
厌氧氨氧化反应器的接种污泥和启动策略   总被引:7,自引:2,他引:7  
厌氧氨氧化细菌产率低,倍增时间长,导致厌氧氨氧化反应器启动过程缓慢,极大限制了其工程化应用,因此选择合适的厌氧氨氧化反应器的接种污泥和启动策略具有重要意义.探讨了污(废)水处理工程中常见的活性污泥用作厌氧氨氧化反应器接种污泥的基本原理、启动策略和应用效果,并对世界上第一个生产性厌氧氨氧化反应器的启动过程进行剖析,提出了加快厌氧氨氧化工程启动的"逐级富集扩大"模式.  相似文献   

10.
为解决在厌氧氨氧化反应进程中,厌氧氨氧化菌抗低温能力较差的问题,以聚乙烯醇-海藻酸钠为包埋剂包埋厌氧氨氧化污泥颗粒,采用UASB反应器研究了HRT对驯化过程中氨氮和亚硝态氮去除效果的影响,考察了温度变化对低温下包埋厌氧氨氧化菌颗粒脱氮效果的影响。结果表明,当进水氨氮浓度为50 mg/L,HRT为7 h时,投加15%包埋污泥后的UASB反应器具有较强的脱氮能力,对NH4+-N、NO2--N的去除率分别为95%和89%。相同条件下,水温从30℃阶梯式降低到14℃时,包埋厌氧氨氧化菌颗粒对NH4+-N的去除率从95%下降为70%,对NO2--N的去除率从89%下降为63%。在14℃下运行期间,调节水力停留时间为11 h可以提高脱氮效果,NH4+-N、NO2--N去除率分别在85%和79%左右。采用聚乙烯醇-海藻酸钠为包埋剂包埋厌氧氨氧化细菌,能大幅度提高低温胁迫下的脱氮性能。  相似文献   

11.
厌氧氨氧化颗粒污泥与生物膜均有助于污泥的持留,为研究实际废水中存在的有机物冲击对两种状态厌氧氨氧化污泥的影响差异,将颗粒污泥与聚氨酯海绵填料置于同一反应器内,进行厌氧氨氧化污泥的挂膜,以及高氨氮废水的长期培养驯化。经过120 d的运行,颗粒/填料复合反应器表现出良好的适应性和氮去除率,进水NH_4~+-N浓度从30 mg/L提高至420 mg/L,容积去除负荷从0.08 kgN/(m~3·d)提升至3.39 kgN/(m~3·d),系统内厌氧氨氧化活性良好。通过平行批次试验,对颗粒污泥和生物膜在不同浓度有机物冲击下的去除效果进行对比,在初始NO_2~--N为125 mg/L左右、COD≤200 mg/L时,两种体系中厌氧氨氧化反应均没有受到抑制,且一定程度得到了促进;而COD在300 mg/L时产生了明显的抑制作用。相比于生物膜,等质量的颗粒污泥表现出了更好的抵抗有机物冲击的能力。  相似文献   

12.
常温低基质下pH值和有机物对厌氧氨氧化的影响   总被引:3,自引:0,他引:3  
在采用氧化沟回流污泥成功启动上向流厌氧氨氧化生物滤池的基础上,研究了常温、低基质条件下pH值和有机物对厌氧氨氧化反应器的影响.结果表明:pH值和有机物对厌氧氨氧化反应器的影响显著.在(20±1)℃下,厌氧氨氧化反应的最适pH值为6.7~8.5.当pH值<6.7或>8.5时,将导致游离氨(FA)和游离亚硝酸(FNA)的浓度分别高于8.93 mg/L和2.67×10-2 mg/L,抑制厌氧氨氧化反应.进水COD浓度的短期快速提高对厌氧氨氧化反应影响不大,但当COD长期维持在60 mg/L以上时,厌氧氨氧化反应受到明显抑制.停止投加COD,经过一段时间的运行后,生物滤池的厌氧氨氧化能力可以恢复到初始状态,对TN的去除率达到80%以上.  相似文献   

13.
厌氧氨氧化技术利用NO_=2^--N氧化NH_4^+-N,实现污水中氮素的高效去除,其中NO_=2^--N的产生是实现厌氧氨氧化应用的难点。短程硝化是获取NO_=2^--N的重要途径之一,但目前在实际工程中通过短程硝化难以实现长期稳定的亚硝酸盐积累。短程反硝化工艺将反硝化过程控制在硝酸盐还原的第一步来积累NO_=2^--N,可实现从反硝化途径获得NO_=2^--N为厌氧氨氧化反应提供底物,去除污水中的氮素污染物。简要介绍了短程反硝化工艺的发展背景、研究进展、启动及控制策略等,并对短程反硝化过程亚硝酸盐积累机制及其与厌氧氨氧化工艺耦合方式进行了总结,最后对其未来的研究方向进行了展望。  相似文献   

14.
厌氧氨氧化(ANAMMOX)工艺因其能耗低且无需外加有机碳源等特点在废水生物脱氮领域具有广阔的应用前景.但该工艺对环境条件十分敏感,尤其对重金属.废水中存在的重金属对Anammox菌产生抑制制约了该工艺的推广应用.文章对目前所报道的重金属离子对厌氧氨氧化菌产生抑制甚至毒害作用的情况进行了总结,比较了各金属离子对Anammox菌脱氮效能的影响及活性恢复效果.  相似文献   

15.
厌氧氨氧化作为一种低能耗、低药耗的高效脱氮工艺,在废水处理领域备受关注。餐厨垃圾厌氧发酵所产沼液的传统处理工艺能耗高、碳源消耗量大,选择厌氧氨氧化工艺有望显著降低处理成本。考虑到餐厨垃圾往往盐分含量高,且在部分地区如重庆、四川等由于饮食习惯导致餐厨垃圾中常含有大量辣椒,通过设置批次试验,分别探究了不同浓度水平的辣椒素和盐度短期冲击对厌氧氨氧化活性的单独影响以及两者协同影响。结果表明,盐度和辣椒素均会对厌氧氨氧化活性产生抑制作用。Hill抑制模型拟合结果显示,NaCl的半抑制浓度为15.4 g/L;辣椒素由于受自身溶解度的影响,对厌氧氨氧化活性的抑制作用有限,高浓度辣椒素(20 mg/L)可使厌氧氨氧化活性下降约20%。盐度和辣椒素同时存在时会对厌氧氨氧化活性产生协同抑制作用,NaCl半抑制浓度下降为14.6 g/L。  相似文献   

16.
为开发总氮去除负荷高、生长稳定的厌氧氨氧化颗粒污泥扩培方法,文章以2L厌氧氨氧化颗粒污泥作为接种污泥,在50 L发酵罐中以SBR的方式,由配水提供主营养成分及微量元素,根据颗粒污泥的脱氮效能,随时调整进水水质,逐渐提高总氮负荷,摸索适宜颗粒污泥扩培的条件;在106 d的时间里,颗粒污泥浓度从800 mg/L增长到11 300 mg/L,总氮去除负荷为3.38 kg/(m~3·d),总氮去除率达到80%以上。通过高通量测序证实颗粒污泥中含有11%的厌氧氨氧化菌。  相似文献   

17.
为了实现低碳城市污水高效深度脱氮,构建短程反硝化/厌氧氨氧化+硝化颗粒污泥脱氮工艺,研究硝化颗粒污泥的培养策略。结果表明,采用上向流污泥床(USB)反应器以序批式运行,并逐步缩短沉淀时间,成功培养出了硝化颗粒污泥,其中90.52%的污泥颗粒粒径>0.5 mm;颗粒污泥的沉降速度随着粒径的增大而增大,0.5~0.9 mm粒径的颗粒污泥平均沉降速度为15.66 m/h。颗粒污泥形成后,USB反应器的氨氮容积去除速率达到1.31 g/(L·d)。短程反硝化厌氧氨氧化+硝化颗粒污泥工艺的脱氮性能分析结果表明,该工艺脱氮效率高、有机碳源需求量低,适合处理低碳城市污水并实现深度脱氮。  相似文献   

18.
新型生物脱氮工艺--OLAND工艺   总被引:5,自引:0,他引:5  
OLAND工艺是基于亚硝酸型硝化-厌氧氨氧化脱氮技术而开发的生物脱氮新工艺.该工艺首先采用限制溶解氧浓度实现氨氮的部分亚硝化并实现亚硝酸盐氮的浓度积累,接着进行厌氧氨氧化反应,从而达到去除含氮污染物的目的.与传统生物脱氮工艺相比,该工艺具有耗氧量少、污泥产量少、不需外加碳源等优点.  相似文献   

19.
《Planning》2016,(1)
厌氧氨氧化的发现很大程度上提高了人们对氮循环的理解,厌氧氨氧化为高氨氮废水的去除带来很大希望。然而,有机碳源的存在会对该过程产生不利影响。在实际废水中,会不可避免地存在有机碳及氮。厌氧氨氧化与反硝化耦合反应可实现在单一系统中同时脱氮除碳。由于该工艺为生物脱氮过程,温度是影响微生物的主要因素,所以温度及有机物都会对厌氧氨氧化与反硝化耦合反应产生重要影响。本文综述了有机物及温度对厌氧氨氧化与反硝化耦合反应的影响,提出了当前研究存在的问题,展望了未来研究的重点。  相似文献   

20.
采用厌氧氨氧化工艺处理污泥脱水滤液具有独特优势。介绍了厌氧氨氧化工艺的机理,并以北京市某污水处理厂为例,简要介绍了该处理工艺的基本组成以及设计过程中需要注意的问题。可供同类工程参考借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号