首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
使用加压热重分析仪、马弗炉和常压滴管炉装置对褐煤、次烟煤、烟煤进行制焦,应用压汞法、低温N2和常温CO2吸附法测定煤焦孔结构参数,并通过扫描电镜观察煤焦表面形貌,测定了煤焦的CHN元素含量,利用热重分析仪测定焦900℃下的CO2气化反应活性,研究了压力、升温速率、高温停留时间对孔结构和气化反应性的影响。研究表明,慢速升温下提高热解压力会降低孔表面积和气化反应性;提高升温速率,降低高温停留时间,则微孔表面积降低,中孔显著增加,大孔的分形维数降低,化学反应活性提高;煤焦反应活性主要与残余挥发分含量相关,其次受到大、中孔表面积影响,而与微孔无关。  相似文献   

2.
在不同温度下热解高水分印尼褐煤并对所得半焦进行了氮气等温吸附测试和热重燃烧试验。结果表明:在热解温度为500~750℃的范围内,随热解终温升高,所得半焦的比表面积和总孔容会先减小后增大,并在650℃后基本维持不变;在相同的热解条件下,高水分印尼褐煤半焦的孔隙更加发达;随热解温度升高,半焦的最大燃烧失重速率先减小而后有所增加,在热解温度为600℃时达到最低值;半焦燃烧反应活化能则随着热解温度的增加持续增加。  相似文献   

3.
采用热重分析法研究了热解终温和升温速率对准东煤热解特性的影响以及热解终温对准东煤气化活性的影响。研究表明,准东煤热解过程可分为3个阶段:干燥脱气阶段、活泼分解阶段和缓慢热解阶段;热解温度?800℃的时候,准东煤热解过程基本结束;升温速率提高,准东煤热解最大失重量和热解特性参数D增加;当气化温度较低的时候,热解终温对准东煤气化活性的影响比较明显,低温焦表现出更好的活性,气化温度较高时,各煤焦的气化活性有趋于一致的趋势。  相似文献   

4.
一种生物污泥热解半焦孔隙结构特性   总被引:3,自引:0,他引:3  
污泥半焦的孔隙结构是影响热解反应的重要因素之一。该文利用固定床反应器在N2气氛下,温度为300~900℃对一种取自香港的生物污泥进行热解。采用ASAP 2010型比表面积及孔径分布分析仪测定生物污泥热解半焦的比表面积及其孔隙结构,研究污泥半焦的孔隙结构在热解过程中的变化规律。利用分形理论和等温吸附理论对半焦进行分析。试验研究与理论分析表明,随着热解终温的提高,孔隙结构变得发达,孔的种类多样化,总孔容积逐渐增加。比表面积总体呈现增加的趋势,从300℃时的0.72 m2/g增加到900℃时的64.88 m2/g,平均孔径为3.7~8.53 nm。不同温度制得的半焦,孔径分布具有相似的特点,在孔径为4 nm左右出现峰值。表面分形维数随热解终温的提高而增高,从2.539增加到了2.824,表面分形维数的增加,有利于污泥的热解。  相似文献   

5.
热解条件及煤种对煤焦气化活性的影响   总被引:3,自引:2,他引:1  
该文对煤焦的常压CO2气化活性与热解制焦条件及煤种的关联耦合进行了分析研究。采用加压热重分析仪与常压热重分析仪联用对不同煤种在不同热解压力与热解终温制得煤焦的CO2气化活性进行对比分析,并提出最大比气化速率和平均气化速率用于表征煤焦的气化活性。最大比气化速率能准确表征煤焦的最大气化活性,其随热解压力的升高先减小后增大,而随热解终温的升高先增加后减小。小龙潭褐煤具有较高的最大气化活性,而神府烟煤和平寨无烟煤的最大气化活性较低。平均气化速率可很好地描述煤焦的气化过程和气化完全信息,两者结合可全面、有效地反映煤焦的气化特性,为气化炉的设计提供科学依据。  相似文献   

6.
热解温度对神府煤热解与气化特性的影响   总被引:7,自引:1,他引:6  
采用大容量加压热重分析仪研究了不同热解温度(500, 650, 800 和1 000 ℃)与压力(常压、3 MPa)下神府煤的热解特性,同时采用傅里叶红外光谱仪、比表面积分析仪等分析仪器对所得煤焦的物化特性进行了详细分析。发现高温有利于挥发分的析出,使得煤焦产量快速降低;同时煤焦内C元素的含量快速增加而H含量逐渐减少,同时煤焦内有机官能团的红外吸收也明显减少;煤焦的孔隙表面积和孔容随热解终温的升高先增大后减小,在800 ℃(常压)和650 ℃ (3MPa)取得最小值。热解温度和压力对煤焦的气化活性也有显著的影响。采用常压热重分析仪在1000 ℃下分析了煤焦的CO2等温气化特性。常压热解焦的CO2等温气化活性随温度升高而降低,而加压热解得到的焦有不同的趋势,说明压力和温度对煤粉热解和气化的影响有一定交互作用。  相似文献   

7.
本文针对锡林浩特褐煤和昭通褐煤进行热解实验研究,得到热解温度及升温速率对两种褐煤热解规律及产物分布的影响。结果表明,两种褐煤具有相同的热解规律,昭通褐煤热解产物优于锡林浩特褐煤。褐煤热解工艺最优参数为热解温度600℃,升温速率10℃/min。  相似文献   

8.
燃烧中气化半焦孔隙结构特性变化实验研究   总被引:2,自引:0,他引:2  
针对工业气化炉二级旋风分离器捕集的气化后半焦,利用高温携带流反应器进行高温燃烧反应特性实验。对1273和1573 K两个温度,5%和20%两个烟气含氧量,在反应器轴向不同停留时间下采得半焦样。采用自动吸附仪(ASAP 2020)测定半焦样氮吸附等温线,对氮吸附等温线形态、BET比表面积及BJH孔容积等孔结构参数进行了分析,并结合分形维数测量和扫描电镜对燃烧过程中气化半焦孔隙结构变化规律进行研究分析。研究表明所采集的半焦样吸附等温线为典型Ⅱ类吸附等温线,高温和较高烟气含氧量对半焦孔隙结构变化有促进作用,半焦燃烧反应中比表面积变化趋势与半焦燃烧反应速率变化趋势相似,后期燃尽速率主要由焦炭本征反应活性决定。  相似文献   

9.
为研究温度对内蒙白音华褐煤热解产物的影响规律,采用程序升温法在管式炉反应器上对白音华褐煤在不同温度下(400~600℃)进行热解,利用傅里叶红外光谱仪和氮气等温吸附方法对褐煤半焦化学组分和物理结构的变化规律进行研究,采用GC-MS和气相色谱结合在线电子天平的方法分别对焦油成分和各煤气产量进行分析,从而探究了褐煤的热解特性。结果表明:中低温热解条件下,随着热解温度的升高,半焦产率降低,而煤气和焦油的产率逐渐增加;煤气产量中,CO_2最多,但在450℃之后稳定在74.4 mL/g;焦油组成中,脂肪烃和含氧化合物占主要成分,其含氮化合物主要以吡啶环和喹啉环的形式存在,且结构稳定;热解可有效提高褐煤煤阶,增大芳碳率和环缩合度;随着热解温度升高,煤样的平均孔径先增大后减小,比表面积和比孔容积则正好相反,这是挥发分析出、官能团分解和焦油生成的共同结果。  相似文献   

10.
CO_2气氛对烟煤热解过程的影响   总被引:2,自引:0,他引:2  
采用热重–傅里叶红外联用的方法研究徐州烟煤在Ar、N2和CO2气氛下的热解特性,考察CO2气氛下反应终温和升温速率对其失重和气体析出特性的影响。结果表明,CO2气氛对煤热解的影响主要在高温区,表现为对煤中碳酸盐分解的抑制作用和对煤焦的气化作用。反应终温900℃时,CO2气氛下CH4和C2H6的析出量较Ar和N2气氛下小,而CO析出量较大。CO2气氛下反应终温由700℃上升到1000℃,CH4和C2H6的析出量略有升高,CO析出量显著升高;升温速率提高,CH4、C2H6和CO析出量降低。  相似文献   

11.
以海泡石为载体制备生物质气化的碱金属催化剂,开展了低温水蒸气条件下的麦秸半焦催化气化试验。采用响应面设计法,进行3-level中心组合设计试验,构建半焦气化性能指标(氢气产率RH2、碳转化率XC、反应速率YC)与催化剂制备参数(K2CO3负载量、催化剂煅烧温度)的响应曲面,对半焦气化性能进行效应分析和优化。研究结果表明:K2CO3负载量对半焦气化反应的影响极显著;催化剂煅烧温度对氢气产率、碳转化率影响显著;二者对氢气产率、碳转化率还存在一定的交互效应。利用Design Expert软件优化,得到最佳的催化剂制备参数为:煅烧温度728℃、K2CO3负载量25.8%,在此优化条件下的试验结果显示RH2?103.67 mol/kg、XC?96.48%、YC?1.28%/min,与模型预测值一致。气化温度对半焦气化有着重要的影响,低于700℃时,气化反应受到抑制,且试验表明海泡石是生物质低温气化制取富氢气体的一种合适的催化剂载体。  相似文献   

12.
以海泡石为载体制备生物质气化的碱金属催化剂,开展了低温水蒸气条件下的麦秸半焦催化气化试验。采用响应面设计法,进行3-level中心组合设计试验,构建半焦气化性能指标(氢气产率RH2、碳转化率XC、反应速率YC)与催化剂制备参数(K2CO3负载量、催化剂煅烧温度)的响应曲面,对半焦气化性能进行效应分析和优化。研究结果表明:K2CO3负载量对半焦气化反应的影响极显著;催化剂煅烧温度对氢气产率、碳转化率影响显著;二者对氢气产率、碳转化率还存在一定的交互效应。利用Design Expert软件优化,得到最佳的催化剂制备参数为:煅烧温度728℃、K2CO3负载量25.8%,在此优化条件下的试验结果显示RH2?103.67 mol/kg、XC?96.48%、YC?1.28%/min,与模型预测值一致。气化温度对半焦气化有着重要的影响,低于700℃时,气化反应受到抑制,且试验表明海泡石是生物质低温气化制取富氢气体的一种合适的催化剂载体。  相似文献   

13.
利用TGA-FTIR联用技术对两种煤在惰性气氛下热解进行了研究,热解终温为1000℃,升温速率分别为20、30和40℃/min,并在线分析了热解产物中的CO、CO2和CH4的生成规律。结果表明,热解组分的析出随温度变化的规律一致,产物的最大量发生在510℃。通过对红外吸收光谱的分析发现,煤热解的挥发分成份的产率与煤化程度有关。煤中的氧含量越高,CO和CO2的释放量越大;氢含量越高,烃类气体释放量越大。  相似文献   

14.
采用低温热解法(450-650℃)对褐煤进行改性处理,研究热解终温对褐煤半焦成浆特性的影响,并从煤质特性和微观孔隙结构的角度对成浆性改变的原因进行了分析,选用Herschel-Bulkley模型对浆体流变特性进行拟合分析,直观地显示了水煤浆流变特性随浆体浓度和热解终温的变化情况.实验结果表明:低温热解有效地提高了褐煤的成浆性能,褐煤水煤浆的最大成浆浓度由改性前的44.31%,最大可升至66.78%,热解终温越高,定黏浓度越大.在表观黏度相近的情况下,热解终温越高,半焦水煤浆的稳定性越好.低温热解能有效脱除褐煤中的水分,促进含氧基团的分解,提高煤阶.热解后,煤的孔隙结构发生变化,热解终温升高,孔比表面积和孔容积减小.  相似文献   

15.
为了解褐煤半焦的燃烧特性,以乌拉盖褐煤低温热解半焦为研究对象,在西安热工研究院有限公司自燃试验台上,采用电厂用煤煤质指标的评价体系及测试方法对其进行了试验研究。结果表明:乌拉盖褐煤半焦属于低水分、低挥发分以及高热值煤种,其燃烧性能优异,极易着火燃尽,着火稳定性较好,与国内典型烟煤性质接近,燃用时无需过多采用稳燃措施;但由于其灰熔融性较低,并具有严重的结渣倾向,为防止尾部对流受热面出现严重的结渣与积灰,建议炉膛出口烟温不高于1 000℃,且在运行中需加强吹灰,对于新建机组锅炉,应采用低氧燃烧技术以及较为严格的分级配风措施,以实现低NOx排放。  相似文献   

16.
煤的快速热解动力学研究   总被引:3,自引:1,他引:3  
煤的快速加热条件下的热解研究对煤气化反应过程以及气化炉的运行有着重要的意义。试验采用TGA/SDTA 851型热天平对不同煤种、不同升温速率、不同灰煤比下的煤快速热解特性进行研究,同时对3种气氛下煤的动力特性进行分析。研究发现:随着升温速率的增加,最大失重速率也有所提高;随着煤的变质程度提高,热解最大失重速率有所降低;随着灰/煤比的增加,失重速率先升后降。说明存在一个最佳的灰/煤比,使得失重速率达到最大值;在N2、、O2、CO2 3种气氛下,CO2气氛下的气化反应进行的温度要高于N2气氛下的热解和O2气氛下的燃烧温度,气化与燃烧相比,气化反应进行的剧烈程度远远小于燃烧。文中也根据Coast-Redfern积分方法得出了煤热解的表观动力学参数。  相似文献   

17.
对褐煤采用裂解与燃烧结合的分级利用方式可以提高其利用效率,同时得到多种高附加值的煤裂解产品.为探索该分级利用的可行性,使用热分析方法研究了伊敏褐煤和大同烟煤的裂解、燃烧和气化过程,得到了其不同反应的特征参数,并使用Coats-Redfern法计算了各反应的活化能.结果表明,伊敏褐煤裂解反应开始温度低,其燃烧及气化反应活性均优于大同烟煤;两种煤的气化反应表观活化能远高于裂解反应;对褐煤进行完全气化利用或部分裂解结合半焦燃烧分级利用效率更高.  相似文献   

18.
桦甸油页岩半焦燃烧反应动力学研究   总被引:15,自引:6,他引:15  
模拟巴西PETROSIX炼油工艺自行设计搭建实验装置,对桦甸油页岩干馏制得半焦。对不同干馏终温半焦进行电镜扫描测试,从微观角度分析了挥发分的析出和干馏半焦的结构变化过程;采用美国PerkinElmer公司生产的Pyris1TGA热重分析仪,对桦甸油页岩干馏半焦进行燃烧特性试验研究,并分析了桦甸不同矿区油页岩半焦、干馏终温、和燃烧升温速率等对半焦燃烧反应特性的影响。通过数据分析,利用Coats-Redfern法确定了桦甸油页岩半焦在低温段的燃烧反应级数为3,而在高温段则为5.5,从而得到油页岩半焦燃烧化学反应的动力学参数,为油页岩半焦的有效开发与经济利用提供了理论依据。  相似文献   

19.
在自行搭建的热重分析仪上,采用CO_2为气化剂,进行了煤焦和生物质焦的共气化实验,分析了热解温度和热解恒温时间对气化反应的影响。所得结论为:3种焦样气化活性大小顺序为麦焦松焦煤焦,生物质焦的反应性要高于煤焦,这是由于生物质中挥发分含量较高,会使热解过程中会产生更多气孔,提高了气化反应性。热解条件的改变会对焦样的气化活性产生影响,缩短热解恒温时间和降低热解温度均会改善焦样的气化活性,热解温度对气化反应活性的影响更为明显。  相似文献   

20.
为全面了解制焦产物性质以便更好地设计制焦反应器,本文利用滴管炉反应器,在常压氮气氛围下实验分析了锦界烟煤在800~1 100℃、停留时间3~5 s的快速热解特性,研究了其热解半焦、热解焦油和热解气的产物组成分布及特性。结果表明:热解产物的产率与热解温度和停留时间都有较大关联,为了在减少焦油产率的同时保证粉状半焦储存的安全性,热解温度宜设置在1 000℃以上,此时热解气产率和H_2质量分数均较高;高温制取的粉状半焦吸附性能差;热解焦油主要由芳香烃及其衍生物组成,极高沸点物质含量较少,制焦反应器管道温度维持在400℃即可有效降低焦油凝结概率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号