首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yu. Fominski  V.  Nevolin  V.N.  Romanov  R.I.  Titov  V.I.  Scharff  W. 《Tribology Letters》2004,17(2):289-294
The tribological performance and tribochemistry of both single-layer WSex(Ni) and bilayer WSex(Ni)/diamond-like carbon coatings formed on steel substrates by pulsed laser deposition are evaluated. The ball-on-disk tests of the coatings in air show that at a laser fluence of 100 J cm–2 and a partial pressure of argon 2 Pa, the endurance of the top WSex(Ni) film in the bilayer coating is nearly four times greater than for single-layer WSex(Ni) film. For the top WSe2(Ni) layer 170 nm thick, deposited onto DLC coating 200 nm, the coating friction coefficient was kept 0.03–0.09 during nearly 2 × 104 cycles.  相似文献   

2.
K.Y. Li  Z.F. Zhou  I. Bello  S.T. Lee 《Wear》2005,258(10):1577-1588
Diamond-like carbon (DLC) coatings were prepared on AISI 440C steel substrates at room temperature by electron cyclotron resonance chemical vapor deposition (ECR-CVD) process in C2H2/Ar plasma. Using the designed Ti/TiN/TiCN/TiC interfacial transition layers, relatively thick DLC coatings (1-2 μm) were successfully prepared on the steel substrates. The friction and wear performance of the DLC coatings was evaluated by ball-on-disk tribometry using a steel counterbody at various normal loads (1-10 N) and sliding speeds (2-15 cm/s). By optimizing the deposition parameters such as negative bias voltage, DLC coatings with hardness up to 30 GPa and friction coefficients lower than 0.15 against the 100Cr6 steel ball could be obtained. The friction coefficient was maintained for 100,000 cycles (∼2.2 km) of dry sliding in ambient environments. In addition, the specific wear rates of the coatings were found to be extremely low (∼10−8 mm3/Nm); at the same time, the ball wear rates were one order of magnitude lower. The influences of the processing parameters and the sliding conditions were determined, and the frictional behavior of the coatings was discussed. It has been found that higher normal loads or sliding speeds reduced the wear rates of the coatings. Therefore, it is feasible to prepare hard and highly adherent DLC coatings with low friction coefficient and low wear rate on engineering steel substrates by the ECR-CVD process. The excellent tribological performance of DLC coatings enables their industrial applications as wear-resistant solid lubricants on sliding parts.  相似文献   

3.
Gao  F.  Wu  G.  Stacchiola  D.  Kaltchev  M.  Kotvis  P.V.  Tysoe  W.T. 《Tribology Letters》2003,14(2):99-104
The friction coefficients of thin KCl films deposited onto clean iron in ultrahigh vacuum are measured using a tungsten carbide tip. A rapid decrease is found in the friction coefficient from 2 for clean iron to 0.27 ± 0.03 after the deposition of 40 Å of KCl. Based on previous contact resistance measurements, this was proposed to be due to the completion of the first layer of KCl. The first-layer KCl coverage was measured by adsorbing deuterium onto an iron surface partially covered by KCl, where deuterium selectively adsorbs onto the iron. This revealed that the first monolayer is complete after the deposition of 40 Å of KCl and that the first-layer KCl film coverage KCl (1) is given by KCl (1) = 1 - exp(-0.39±0.02t), where t is the film thickness. XPS data suggest that heating a KCl film to 550 K causes it to wet the surface. This leads to decreases in the friction coefficients for thin KCl films in accord with the idea that friction is reduced by the first monolayer of KCl on iron. Temperature-programmed desorption data indicate that KCl in the first monolayer is 5 kJ/mol more stable than the multilayer consistent with the wetting behavior. Finally, the kinetic data are analyzed to suggest that the first-layer film is 2.6 Å thick.  相似文献   

4.
Zhao  Q.  Bahadur  S. 《Tribology Letters》2002,12(1):23-33
The effect of sliding variables, including counterface roughness, sliding speed, and contact pressure, on the run-in state of wear and friction was studied. Sliding was performed in the pin-on-disk configuration with a polyphenylene sulfide (PPS) pin resting on the flat steel counterface. Some experiments were also run to study the effect of air cooling and heating. Optical microscopy and scanning electron microscopy were used to study the shape and size of the wear debris, worn pin surface, and the transfer film formed on steel counterfaces. It was found that friction and wear in the run-in state were significantly affected by the sliding variables studied and their influence was closely related to the development of a transfer film during the run-in state. If the transfer film developed during initial sliding, the coefficient of friction increased and wear rate decreased. The wear rate in the run-in state increased with the increase in initial counterface roughness and there was an optimal counterface roughness of 0.06 m Ra for minimum steady state wear rate. A higher applied load led to a higher wear rate in the run-in state but that was not the case with steady state wear rate.  相似文献   

5.
Tribological behavior of polycrystalline and single-crystal silicon   总被引:3,自引:0,他引:3  
Gardos  M. N. 《Tribology Letters》1996,2(4):355-373
SEM tribometric experiments were performed with polycrystalline silicon (poly-Si) vs. poly-Si and Si(111) vs. Si(111) interfaces in moderate vacuum to 850°C, complementing similar recent experiments on Si(100) vs. Si(100). All friction data agree with a hypothesis associating the wear- and thermal desorption-induced generation and cooling-induced adsorptive passivation of dangling bonds on the sliding surfaces with high and low adhesion and friction, respectively. Strong additional evidence is given for a surface re- and deconstruction-induced, temporary reduction in high temperature friction. The wear rate of the various Si vs. Si specimens (on the order of 10-12 m3 /(N m)) specific to the wide temperature range vacuum test regimen is about 104 times higher than that of unpolished PCD films sliding against themselves under multi-GPa unit loads and similar environmental conditions. In contrast, the characteristic load-carrying capacity of the high-wearing Si, regardless of its crystal structure, was found to be only 1 MPa. The wear mechanism of the various Si crystallinities was heavily influenced by the agglomeration and plowing of the wear debris particles trapped in the contact zone.  相似文献   

6.
The work presents data on friction and wear behaviour of pin-on-disc pairs with superhard diamond-like carbon (DLC) coatings and hard coatings of zirconium nitride (ZrN) and titanium nitride (TiN) in liquid nitrogen with loads of 2.5 and 10 N and sliding speed of 0.06 m/s. It is shown that at cryogenic temperatures the friction coefficients of pairs of two types of DLC coatings obtained by vacuum-arc deposition of filtered high-speed carbon plasma fluxes depend to a great deal on the mechanical properties of the coatings defined by predominant sp2 or sp3 hybridization of valence electrons. A friction coefficient of 0.76 was observed for friction pairs of superhard (90 GPa) DLC coatings having properties similar to those of diamond. For “softer” DLC coatings of 40 GPa and properties similar to those of graphite the friction coefficient shows lower values (0.24–0.48) dependent on normal load and counterbody material. The DLC coatings obtained by the filtered arc technology exhibit good wear resistance and have strong adhesion to the substrate under friction in liquid nitrogen. With a normal load of 10 N under cryogenic temperature a low wear rate (of the order of 7.2×10−4 nm/cycle) was found for superhard DLC coatings. The friction coefficient of pairs with hard ZrN and superhard DLC coatings on steel discs was revealed to be linearly dependent on the counterbody material hardness between 20 and 100 GPa. The hardness of the pin was varied by means of depositing TiN or DLC coatings and also by using high-hardness compounds (boron nitride and synthetic diamond). Proceeding this way can be promising since it offers the possibility of creating low-temperature junctions of required friction properties.  相似文献   

7.
Friction and wear behaviors of diamond-like carbon (DLC) film in humid N2 (RH-100%) sliding against different counterpart ball (Si3N4 ball, Al2O3 ball and steel ball) were investigated. It was found that the friction and wear behaviors of DLC film were dependent on the friction-induced tribochemical interactions in the presence of the DLC film, water molecules and counterpart balls. When sliding against Si3N4 ball, a tribochemical film that mainly consisted of silica gel was formed on the worn surface due to the oxidation and hydrolysis of the Si3N4 ball, and resulted in the lowest friction coefficient and wear rate of the DLC film. The degradation of the DLC film catalyzed by Al2O3 ball caused the highest wear rate of DLC film when sliding against Al2O3 ball, while the tribochemical reactions between DLC film and steel ball led to the highest friction coefficient when sliding against steel ball.  相似文献   

8.
The role of hydrogen on the friction mechanism of diamond-like carbon films   总被引:2,自引:0,他引:2  
Donnet  C.  Fontaine  J.  Grill  A.  Le Mogne  T. 《Tribology Letters》2001,9(3-4):137-142
The structure, properties and tribological behavior of DLC films are dependent on the deposition process, the hydrogen concentration and chemical bondings in the films. The present paper reports selected tribological experiments on model DLC films with different hydrogen contents. The experiments were performed in ultrahigh vacuum or in an atmosphere of pure hydrogen or argon in order to elucidate various friction mechanisms. Two typical friction regimes are identified. High steady-state friction in UHV (friction coefficient of 0.6) is observed for the lowest hydrogenated and mostly sp2-bonded DLC film. Superlow steady-state friction (friction coefficient in the millirange) is observed both for the highest hydrogenated film in UHV, and for the lowest hydrogenated film in an atmosphere of hydrogen (10 hPa). The high steady-state friction in UHV, observed for the lowest hydrogenated film with a dominant sp2 carbon hybridization, is associated with a –* sub-band overlap responsible for an increased across-the-plane chemical bonding with a high shear strength similar to what is observed with unintercalated graphite in the same UHV conditions. Superlow friction is correlated with a hydrogen saturation across the shearing plane through weak van der Waals interactions between the polymer-like hydrocarbon top layers. This regime is observed during the steady-state period if the film contains enough hydrogen incorporated during deposition. If this condition is not satisfied (i.e., for the film with the lowest hydrogen content), the limited diffusion of hydrogen from the film network towards the sliding surfaces seems to be responsible for a superlow running-in period. The superlow friction level can be reached over longer time periods by suitable combinations of temperature and molecular hydrogen present in the surrounding atmosphere during friction.  相似文献   

9.
Friction coefficients are measured in ultrahigh vacuum using a tungsten carbide tribopin against thin films of sodium chloride and potassium iodide deposited onto clean iron. It is found, in accordance with previous measurements for potassium chloride on iron, that the friction coefficient falls from an initial value of 2 for the clean iron surface to a minimum value after a few tens of Ångstroms of the halide have been deposited onto the surface, and remains constant for thicker films. The minimum friction coefficient is independent of applied load and therefore obeys Amontons' law. Simple theories for the effect of a low-shear-strength film suggest that the friction coefficient should depend on the shear strength of the film. This idea is tested by plotting the minimum friction coefficient versus the hardness of the film material, which is proportional to its shear strength, where a linear correlation was found. The lack of dependence of friction coefficient with film thickness for thicker films implies that ploughing forces do not contribute significantly to the friction coefficient.  相似文献   

10.
Zhang  Xiaoling  Prakash  B.  Lauwerens  W.  Zhu  Xiaodong  He  Jiawen  Celis  J.-P. 《Tribology Letters》2003,14(2):131-135
The investigation of the tribological performance of MoS2-based coatings in air of high humidity is critical for the future use of such low-friction and high-wear-resistant coatings in ambient air. Sulfur-deficient MoS x coatings with a basal plane (x = 1.3) and a random (x = 1.8) crystallographic orientation were produced by planar magnetron sputtering. The coefficient of friction and the wear loss of MoSx coatings in comparison with TiN and amorphous TiB2 coatings were investigated in bi-directional sliding fretting tests performed in ambient air of different relative humidity. The wear rate expressed as a volumetric loss per unit of dissipated energy was determined. From these results, the best friction and wear performance was achieved with basal-plane-oriented MoS x coatings tested at a relative humidity in the range of 10-50%. A coefficent of friction of 0.06-0.08 and a wear rate of 4 × 103 m3J-1, at a normal load of 1 N and a fretting frequency of 10 Hz, were recorded for that type of MoS x coatings.  相似文献   

11.
The purpose of this work was to establish the conditions for the operation and break-in of water-lubricated ceramic bearings. The experiments consisted of sliding 1/4 silicon nitride or—carbide balls against pre-polished disks of the same material in water until tribochemical wear generates smooth conformal surfaces that allow hydrodynamic lubrication (<0.002) by very thin water films. This running in was performed at various sliding speeds (0.01-4m/s) and loads (0.5-20N). The minimum sliding speed for low friction were 0.04m/s for silicon nitride and 0.5m/s for silicon carbide, much lower than for conventional bearings. The load carrying pressures were 60-80MPa, which is higher than the usually pressures of thrust bearings. The hydrodynamic fluid film thickness was estimated with a standard integration of Reynolds' equations modified for circular geometry, it was to be 5-15nm for silicon nitride, 25nm for silicon carbide. Operation over long distances (80km) allowed us to measure the wear rate during hydrodynamic lubrication; this was found to be <2×10–11mm3/nm, a rate acceptable for industrial application. A novel method completed during this work allows the determination of the wear rate during run-in. It varies with sliding velocity for silicon nitride, from 1 to 6×10–5mm3/nm; it is constant at 4×10–6mm3/nm for silicon carbide.  相似文献   

12.
The potential of coatings to protect components against wear and to reduce friction has led to a large variety of protective coatings. In order to check the success of coating modifications and to find solutions for different purposes, initial tests with laboratory tribometers are usually done to give information about the performance of a coating. Different Ti‐based coatings (TiN, Ti(C,N), and TiAlN) and NiP were tested in comparison to coatings with an additional diamond‐like carbon (DLC) top coating. Tests were done in laboratory air at room temperature with oscillating sliding (gross slip fretting) with a ball‐on‐disc arrangement against a ceramic ball (Al2O3). Special attention was paid to possible effects of moisture (relative humidity). The coefficient of friction was measured on line, and the volumetric wear at the disc was determined after the test from microscopic measurements of the wear scar and additional profiles. The friction and wear behaviour is quite different for the different coatings and depends more or less on the relative humidity. The DLC coating on top of the other coatings reduces friction and wear considerably. In normal and in moist air the coefficient of wear of the DLC top‐layer coating is significantly less than 10−6 mm3/Nm and the coefficient of friction is below 0.1. In dry air, however, there is a certain tendency to high wear and high friction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The friction of diamond and diamond-like carbon (DLC) materials was evaluated in reciprocating sliding wear testing under controlled relative humidity. The testing conditions were a displacement stroke of 100 μm, an oscillatory frequency of 8 Hz and a normal load of 2 N. The coefficient of friction of diamond and hydrogen-free DLC (a-C) coatings against a corundum sphere in the steady regime decreased with an increase in relative humidity. A water layer physisorbed at the interface between the mating surfaces played two major roles: acting as a lubricant and increasing the true area of contact. However, it was noticed that the friction coefficient of the hydrogenated DLC (a-C:H) coatings first increased and then decreased with increasing relative humidity in the steady state. There appeared to be a critical relative humidity for the a-C:H coatings, at which the steady-state friction reached the maximum value. The frictional behaviour of the a-C:H coatings also showed dependence on the wear test duration. The interaction between hydrogen and oxygen at the interface between the a-C:H coating and water layer was mainly responsible for such behaviour.  相似文献   

14.
Reciprocating sliding tests of ion-beam deposited (IBD) Pb–Mo–S coatings were performed with an in situ tribometer that allows real-time visualization and Raman analysis of the sliding contact through a transparent hemisphere. Experiments were performed in dry air, ambient air (∼50% RH) and mixtures of dry and humid air cycled between low and high humidity. Third bodies formed in the sliding contact were monitored through an optical microscope and analyzed by Raman Spectroscopy. Third body velocity accommodation modes were identified and correlated with friction behavior in dry and ambient air. The dominant velocity accommodation mode in both dry and humid air was interfacial sliding between the outer surface of the transfer film and the wear track; this interface, based on present and earlier studies, is crystalline MoS2. Therefore, the friction coefficient was controlled by the interfacial shear strength of MoS2 sliding against MoS2. Humid air sliding was accompanied by a rise in the friction coefficient and a small but observable second velocity accommodation mode: shear/extrusion of the transfer film. It is concluded that the friction rise in humid air was due to an increase in the interfacial shear strength, and that the rise in friction caused the third body to deform rather than the deformation causing the friction to rise.  相似文献   

15.
The tribological performance of hydrogenated diamond-like carbon (DLC) coatings is studied by molecular dynamics simulations employing a screened reactive bond-order potential that has been adjusted to reliably describe bond-breaking under shear. Two types of DLC films are grown by CH2 deposition on an amorphous substrate with 45 and 60 eV impact energy resulting in 45 and 30% H content as well as 50 and 30% sp3 hybridization of the final films, respectively. By combining two equivalent realizations for both impact energies, a hydrogen-depleted and a hydrogen-rich tribo-contact is formed and studied for a realistic sliding speed of 20 m s−1 and loads of 1 and 5 GPa. While the hydrogen-rich system shows a pronounced drop of the friction coefficient for both loads, the hydrogen-depleted system exhibits such kind of running-in for 1 GPa, only. Chemical passivation of the DLC/DLC interface explains this running-in behavior. Fluctuations in the friction coefficient occurring at the higher load can be traced back to a cold welding of the DLC/DLC tribo-surfaces, leading to the formation of a transfer film (transferred from one DLC partner to the other) and the establishment of a new tribo-interface with a low friction coefficient. The presence of a hexadecane lubricant leads to low friction coefficients without any running-in for low loads. At 10 GPa load, the lubricant starts to degenerate resulting in enhanced friction.  相似文献   

16.
In this study, the authors investigated the tribological performance of diamond and diamondlike carbon (DLC) films as a function of temperature. Both films were deposited on silicon carbide (SiC) by microwave plasma chemical vapor deposition and ion-beam deposition processes. Tribological tests were performed on a reciprocating wear machine in open air (20 to 30% relative humidity) and under a 10 N load using SiC pins. For the test conditions explored, the steady-state friction coefficients of test pairs without a diamond or DLC film were 0.7 to 0.9 and the average wear rates of pins were 10?5 to 10?7 mm3/N·m, depending on ambient temperature. DLC films reduced the steady-slate friction coefficients of the test pairs by factors of three to five and the wear rates of pins by two to three orders of magnitude. Low friction coefficients were also obtained with the diamond films, but wear rates of the counterface pins were high due to the very abrasive nature of these films. The wear of SiC disks coated with either diamond or DLC films was virtually unmeasurable while the wear of uncoated disks was substantial. Test results showed that the DLC films could afford low friction up to about 300° C. At higher temperatures, the DLC films graphitized and were removed from the surface. The diamond films could withstand much higher tempera-lures, but their tribological behavior degraded. Raman spectroscopy and scanning electron microscopy were used to elucidate the friction and wear mechanisms of both films at high temperatures.  相似文献   

17.
Tribological behaviors and the relevant mechanism of a highly pure polycrystalline bulk Ti3AlC2 sliding dryly against a low carbon steel disk were investigated. The tribological tests were carried out using a block-on-disk type high-speed friction tester, at the sliding speeds of 20–60 m/s under a normal pressure of 0.8 MPa. The results showed that the friction coefficient is as low as 0.1∼0.14 and the wear rate of Ti3AlC2 is only (2.3–2.5) × 10−6 mm3/Nm in the sliding speed range of 20–60 m/s. Such unusual friction and wear properties were confirmed to be dependant dominantly upon the presence of a frictional oxide film consisting of amorphous Ti, Al, and Fe oxides on the friction surfaces. The oxide film is in a fused state during the sliding friction at a fused temperature of 238–324 °C, so it takes a significant self-lubricating effect.  相似文献   

18.
载流条件下的1Cr18Ni9Ti/浸金属碳摩擦磨损性能研究   总被引:2,自引:2,他引:0  
在销-盘摩擦磨损试验机上试验了载荷、速度、电流对1Cr18Ni9Ti/浸金属碳对磨时的摩擦因数、磨损量及磨损形貌的影响。试验结果表明,载荷对1Cr18Ni9Ti/浸金属碳摩擦副的摩擦因数和销试样的磨损率有显著影响:载荷越大,摩擦因数越大,磨损率越低;摩擦因数、磨损率与速度的关系受载荷的制约。当低载时,以电流影响为主。销试样的磨损表面出现了粘着磨损,氧化磨损和电弧烧蚀。  相似文献   

19.
The effects of n-pentanol vapor on friction and wear of hydrogenated diamond-like carbon (DLC) films during sliding against a 440C stainless steel (SS) ball were investigated with a reciprocating pin-on-disc tribometer. Under dry sliding conditions, the friction coefficient is initially high (>0.2) for a so-called run-in period and then gradually subsequently decreases to an ultra-low value (<0.025). During the run-in period, a carbon transfer film is formed on the SS ball side, which seems to be the key for the ultra-low friction behavior. In n-pentanol vapor environments, the friction coefficient remained nearly constant at ~0.15 throughout the entire test cycles without any noticeable run-in period. Although the friction coefficient is high, there is no visible wear on rubbing surfaces when examined by optical microscopy, and the transfer film forming tendency on the SS ball side was much reduced. In humid environments, the wear prevention effect is not observed and transfer films do form on the ball side. These results imply that the n-pentanol layer adsorbed on DLC film from the vapor phase provides a molecularly thin lubrication layer which can prevent the substrate from wear.  相似文献   

20.
This study concerns the effects of tribochemical interactions at the interface of Si-DLC (silicon-doped diamond-like carbon) film and steel ball in sliding contact on tribological properties of the film. The Si-DLC film was over-coated on pure DLC coating by radio frequency plasma-assisted chemical vapor deposition (r.f. PACVD) with different Si concentration. Friction tests against steel ball using a reciprocating type tribotester were performed in ambient environment. X-Ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) were used to study the chemical characteristics and elemental composition of the films and mating balls after tests. Results showed a darkgray film consisting of carbon, oxygen and silicon on the worn steel ball surface with different thickness. On the contrary, such film was not observed on the surface of the ball slid against pure DLC coating. The oxidation of Si-DLC surface and steel ball was also found at particular regions of contact area. This demonstrates that tribochemical interactions occurred at the contact area of Si-DLC and steel ball during sliding to form a tribofilm (so called transfer film) on the ball specimen. While the pure DLC coating exhibited high coefficient of friction (∼0.06), the Si-DLC film showed a significant lower coefficient of friction (∼0.022) with the presence of tribofilm on mating ball surface. However, the Si-DLC film possesses a very high wear rate in comparison with the pure DLC. It was found that the tribochemical interactions strongly affected tribological properties of the Si-DLC film in sliding against steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号