首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many parallel and distributed multiprocessor systems, the processors are connected based on different types of interconnection networks. The topological structure of an interconnection network is typically modeled as a graph. Among the many kinds of network topologies, the crossed cube is one of the most popular. In this paper, we investigate the panpositionable panconnectedness problem with respect to the crossed cube. A graph G is r-panpositionably panconnected if for any three distinct vertices x, y, z of G and for any integer \(l_1\) satisfying \(r \le l_1 \le |V(G)| - r - 1\), there exists a path \(P = [x, P_1, y, P_2, z]\) in G such that (i) \(P_1\) joins x and y with \(l(P_1) = l_1\) and (ii) \(P_2\) joins y and z with \(l(P_2) = l_2\) for any integer \(l_2\) satisfying \(r \le l_2 \le |V(G)| - l_1 - 1\), where |V(G)| is the total number of vertices in G and \(l(P_1)\) (respectively, \(l(P_2)\)) is the length of path \(P_1\) (respectively, \(P_2\)). By mathematical induction, we demonstrate that the n-dimensional crossed cube \(CQ_n\) is n-panpositionably panconnected. This result indicates that the path embedding of joining x and z with a mediate vertex y in \(CQ_n\) is extremely flexible. Moreover, applying our result, crossed cube problems such as panpositionable pancyclicity, panpositionably Hamiltonian connectedness, and panpositionable Hamiltonicity can be solved.  相似文献   

2.
It is known that the n-qubit system has no unextendible product bases (UPBs) of cardinality \(2^n-1\), \(2^n-2\) and \(2^n-3\). On the other hand, the n-qubit UPBs of cardinality \(2^n-4\) exist for all \(n\ge 3\). We prove that they do not exist for cardinality \(2^n-5\).  相似文献   

3.
Constructions of quantum caps in projective space PG(r, 4) by recursive methods and computer search are discussed. For each even n satisfying \(n\ge 282\) and each odd z satisfying \(z\ge 275\), a quantum n-cap and a quantum z-cap in \(PG(k-1, 4)\) with suitable k are constructed, and \([[n,n-2k,4]]\) and \([[z,z-2k,4]]\) quantum codes are derived from the constructed quantum n-cap and z-cap, respectively. For \(n\ge 282\) and \(n\ne 286\), 756 and 5040, or \(z\ge 275\), the results on the sizes of quantum caps and quantum codes are new, and all the obtained quantum codes are optimal codes according to the quantum Hamming bound. While constructing quantum caps, we also obtain many large caps in PG(r, 4) for \(r\ge 11\). These results concerning large caps provide improved lower bounds on the maximal sizes of caps in PG(r, 4) for \(r\ge 11\).  相似文献   

4.
The problem of two edge-disjoint paths is to identify two paths \(Q_1\) and \(Q_2\) from source \(s \in V\) to target \(t \in V\) without any common arc in a directed connected graph \(G=(V, E)\). In this paper, we present an adaptive stabilizing algorithm for finding a pair of edge-disjoint paths from s to t in G in O(D) rounds with state-space complexity of \(O(log\; n)\) bits per process, where n is the number of nodes and D is the diameter of the graph. The proposed algorithm is optimal with respect to its time complexity, and the total length of the shortest paths. In addition, it can also be used to solve the problem for undirected graphs. Since the proposed algorithm is stabilizing, it does not require initialization and is capable of withstanding transient faults. We view a fault that perturbs the state of the system but not its program as a transient fault. In addition, the proposed algorithm is adaptive since it is capable of dealing with topology changes in the form of addition/removal of arcs and/or nodes as well as changes in the directions of arcs provided that two edge-disjoint paths between s and t exist after the topology change.  相似文献   

5.
Let \(G=(V,E)\) be an unweighted undirected graph with n vertices and m edges, and let \(k>2\) be an integer. We present a routing scheme with a poly-logarithmic header size, that given a source s and a destination t at distance \(\varDelta \) from s, routes a message from s to t on a path whose length is \(O(k\varDelta +m^{1/k})\). The total space used by our routing scheme is \(mn^{O(1/\sqrt{\log n})}\), which is almost linear in the number of edges of the graph. We present also a routing scheme with \(n^{O(1/\sqrt{\log n})}\) header size, and the same stretch (up to constant factors). In this routing scheme, the routing table of every \(v\in V\) is at most \(kn^{O(1/\sqrt{\log n})}deg(v)\), where deg(v) is the degree of v in G. Our results are obtained by combining a general technique of Bernstein (2009), that was presented in the context of dynamic graph algorithms, with several new ideas and observations.  相似文献   

6.
We study the problem of non-preemptively scheduling n jobs, each job j with a release time \(t_j\), a deadline \(d_j\), and a processing time \(p_j\), on m parallel identical machines. Cieliebak et al. (2004) considered the two constraints \(|d_j-t_j|\le \lambda {}p_j\) and \(|d_j-t_j|\le p_j +\sigma \) and showed the problem to be NP-hard for any \(\lambda >1\) and for any \(\sigma \ge 2\). We complement their results by parameterized complexity studies: we show that, for any \(\lambda >1\), the problem remains weakly NP-hard even for \(m=2\) and strongly W[1]-hard parameterized by m. We present a pseudo-polynomial-time algorithm for constant m and \(\lambda \) and a fixed-parameter tractability result for the parameter m combined with \(\sigma \).  相似文献   

7.
We derive a general upper bound of the \(R_h\) -restricted connectivity for the arrangement graph, namely the minimum cardinality of a vertex set, whose removal disconnects the graph, but every remaining vertex has at least \(h ({\ge }0)\) neighbors in the survival graph. We show that this upper bound is exact when \(h \in [0, 2]\) and provide an asymptotic lower bound for the cases where \(h\ge 3\).  相似文献   

8.
9.
We consider the following scheduling problem. We have m identical machines, where each machine can accomplish one unit of work at each time unit. We have a set of n fully parallel jobs, where each job j has \(s_j\) units of workload, and each unit workload can be executed on any machine at any time unit. A job is considered complete when its entire workload has been executed. The objective is to find a schedule that minimizes the total weighted completion time \(\sum w_j C_j\), where \(w_j\) is the weight of job j and \(C_j\) is the completion time of job j. We provide theoretical results for this problem. First, we give a PTAS of this problem with fixed m. We then consider the special case where \(w_j = s_j\) for each job j, and we show that it is polynomial solvable with fixed m. Finally, we study the approximation ratio of a greedy algorithm, the Largest-Ratio-First algorithm. For the special case, we show that the approximation ratio depends on the instance size, i.e. n and m, while for the general case where jobs have arbitrary weights, we prove that the upper bound of the approximation ratio is \(1 + \frac{m-1}{m+2}\).  相似文献   

10.
Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order \(0<\alpha <1\). As to the conforming scheme, the spatial global superconvergence and temporal convergence order of \(O(h^2+\tau ^{2-\alpha })\) for both the original variable u in \(H^1\)-norm and the flux \(\vec {p}=\nabla u\) in \(L^2\)-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and \(\tau \) are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of \(\textit{EQ}_1^{\textit{rot}}\) nonconforming element, which manifests that convergence orders of \(O(h+\tau ^{2-\alpha })\) and \(O(h^2+\tau ^{2-\alpha })\) for the original variable u in broken \(H^1\)-norm and \(L^2\)-norm, respectively, and approximation for the flux \(\vec {p}\) converging with order \(O(h+\tau ^{2-\alpha })\) in \(L^2\)-norm. Numerical examples are provided to demonstrate the theoretical analysis.  相似文献   

11.
One way to depict a crystallographic structure is by a periodic (di)graph, i.e., a graph whose group of automorphisms has a translational subgroup of finite index acting freely on the structure. We establish a relationship between periodic graphs representing crystallographic structures and an infinite hierarchy of intersection languages \(\mathcal {DCL}_d,\,d=0,1,2,\ldots \), within the intersection classes of deterministic context-free languages. We introduce a class of counter machines that accept these languages, where the machines with d counters recognize the class \(\mathcal {DCL}_d\). An intersection of d languages in \(\mathcal {DCL}_1\) defines \(\mathcal {DCL}_d\). We prove that there is a one-to-one correspondence between sets of walks starting and ending in the same unit of a d-dimensional periodic (di)graph and the class of languages in \(\mathcal {DCL}_d\). The proof uses the following result: given a digraph \(\Delta \) and a group G, there is a unique digraph \(\Gamma \) such that \(G\le \mathrm{Aut}\,\Gamma ,\,G\) acts freely on the structure, and \(\Gamma /G \cong \Delta \).  相似文献   

12.
The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474–1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS \([[n,n-2d+2,d]]_q\) codes with minimum distances \(d>\frac{q}{2}\) for sparse lengths \(n>q+1\). In the case \(n=\frac{q^2-1}{m}\) where \(m|q+1\) or \(m|q-1\) there are complete results. In the case \(n=\frac{q^2-1}{m}\) while \(m|q^2-1\) is neither a factor of \(q-1\) nor \(q+1\), no q-ary quantum MDS code with \(d> \frac{q}{2}\) has been constructed. In this paper we propose a direct approach to construct Hermitian self-orthogonal codes over \(\mathbf{F}_{q^2}\). Then we give some new q-ary quantum codes in this case. Moreover many new q-ary quantum MDS codes with lengths of the form \(\frac{w(q^2-1)}{u}\) and minimum distances \(d > \frac{q}{2}\) are presented.  相似文献   

13.
Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

14.
We study the following energy-efficient scheduling problem. We are given a set of n jobs which have to be scheduled by a single processor whose speed can be varied dynamically. Each job \(J_j\) is characterized by a processing requirement (work) \(p_j\), a release date \(r_j\), and a deadline \(d_j\). We are also given a budget of energy E which must not be exceeded and our objective is to maximize the throughput (i.e., the number of jobs which are completed on time). We show that the problem can be solved optimally via dynamic programming in \(O(n^4 \log n \log P)\) time when all jobs have the same release date, where P is the sum of the processing requirements of the jobs. For the more general case with agreeable deadlines where the jobs can be ordered so that, for every \(i < j\), it holds that \(r_i \le r_j\) and \(d_i \le d_j\), we propose an optimal dynamic programming algorithm which runs in \(O(n^6 \log n \log P)\) time. In addition, we consider the weighted case where every job \(J_j\) is also associated with a weight \(w_j\) and we are interested in maximizing the weighted throughput (i.e., the total weight of the jobs which are completed on time). For this case, we show that the problem becomes \(\mathcal{NP}\)-hard in the ordinary sense even when all jobs have the same release date and we propose a pseudo-polynomial time algorithm for agreeable instances.  相似文献   

15.
We introduce a general method of gluing multi-partite states and show that entanglement swapping is a special class of a wider range of gluing operations. The gluing operation of two m and n qudit states consists of an entangling operation on two given qudits of the two states followed by operations of measurements of the two qudits in the computational basis. Depending on how many qudits (two, one or zero) we measure, we have three classes of gluing operation, resulting respectively in \(m+n-2\), \(m+n-1\), or \(m+n\) qudit states. Entanglement swapping belongs to the first class and has been widely studied, while the other two classes are presented and studied here. In particular, we study how larger GHZ and W states can be constructed when we glue the smaller GHZ and W states by the second method. Finally we prove that when we glue two states by the third method, the k-uniformity of the states is preserved. That is when a k-uniform state of m qudits is glued to a \(k'\)-uniform state of n qudits, the resulting state will be a \(\hbox {min}(k,k')\)-uniform of \(m+n\) qudits.  相似文献   

16.
We investigate the distinguishability of orthogonal generalized Bell states (GBSs) in \(d\otimes d\) system by local operations and classical communication (LOCC), where d is a prime. We show that |S| is no more than \(d+1\) for any l GBSs, i.e., \(|S|\le d+1\), where S is maximal set which is composed of pairwise noncommuting pairs in \({\varDelta } U\). If \(|S|\le d\), then the l GBSs can be distinguished by LOCC according to our main Theorem. Compared with the results (Fan in Phys Rev Lett 92:177905, 2004; Tian et al. in Phys Rev A 92:042320, 2015), our result is more general. It can determine local distinguishability of \(l (> k)\) GBSs, where k is the number of GBSs in Fan’s and Tian’s results. Only for \(|S|=d+1\), we do not find the answer. We conjecture that any l GBSs cannot be distinguished by one-way LOCC if \(|S|=d+1\). If this conjecture is right, the problem about distinguishability of GBSs with one-way LOCC is completely solved in \(d\otimes d\).  相似文献   

17.
This paper studies the problem of approximating a function f in a Banach space \(\mathcal{X}\) from measurements \(l_j(f)\), \(j=1,\ldots ,m\), where the \(l_j\) are linear functionals from \(\mathcal{X}^*\). Quantitative results for such recovery problems require additional information about the sought after function f. These additional assumptions take the form of assuming that f is in a certain model class \(K\subset \mathcal{X}\). Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \(\bar{K}\) of all f in K with these measurements. Therefore, the problem is reduced to analytically or numerically approximating this Chebyshev ball. Most results study this problem for classical Banach spaces \(\mathcal{X}\) such as the \(L_p\) spaces, \(1\le p\le \infty \), and for K the unit ball of a smoothness space in \(\mathcal{X}\). Our interest in this paper is in the model classes \(K=\mathcal{K}(\varepsilon ,V)\), with \(\varepsilon >0\) and V a finite dimensional subspace of \(\mathcal{X}\), which consists of all \(f\in \mathcal{X}\) such that \(\mathrm{dist}(f,V)_\mathcal{X}\le \varepsilon \). These model classes, called approximation sets, arise naturally in application domains such as parametric partial differential equations, uncertainty quantification, and signal processing. A general theory for the recovery of approximation sets in a Banach space is given. This theory includes tight a priori bounds on optimal performance and algorithms for finding near optimal approximations. It builds on the initial analysis given in Maday et al. (Int J Numer Method Eng 102:933–965, 2015) for the case when \(\mathcal{X}\) is a Hilbert space, and further studied in Binev et al. (SIAM UQ, 2015). It is shown how the recovery problem for approximation sets is connected with well-studied concepts in Banach space theory such as liftings and the angle between spaces. Examples are given that show how this theory can be used to recover several recent results on sampling and data assimilation.  相似文献   

18.
What is the minimal number of elements in a rank-1 positive operator-valued measure (POVM) which can uniquely determine any pure state in d-dimensional Hilbert space \(\mathcal {H}_d\)? The known result is that the number is no less than \(3d-2\). We show that this lower bound is not tight except for \(d=2\) or 4. Then we give an upper bound \(4d-3\). For \(d=2\), many rank-1 POVMs with four elements can determine any pure states in \(\mathcal {H}_2\). For \(d=3\), we show eight is the minimal number by construction. For \(d=4\), the minimal number is in the set of \(\{10,11,12,13\}\). We show that if this number is greater than 10, an unsettled open problem can be solved that three orthonormal bases cannot distinguish all pure states in \(\mathcal {H}_4\). For any dimension d, we construct \(d+2k-2\) adaptive rank-1 positive operators for the reconstruction of any unknown pure state in \(\mathcal {H}_d\), where \(1\le k \le d\).  相似文献   

19.
The best-of-n problem (Valentini et al. in Front Robot AI 4(9):1–18, 2017) is one of the decision-making problems in which many robots (agents) select the best option among a set of n alternatives and are focused on the field of Swarm Robotics. Almost all of the previous studies focused on binary decision-making scenarios (\(n = 2\)) and could not be applied without any change in the case of \(n> 2\). It is necessary to satisfy constraints on the number of robots N, or the time required for reaching the best option is abruptly increased. Therefore, it is required to construct a method that can deal with \(n> 2\). In this paper, we propose an algorithm (BRT model, bias and rising threshold model) in which the time and the possibility of reaching agreement are not dependent on the number of robots N even when \(n> 2\). By computer experiments, our claims are verified within the tested parameter ranges.  相似文献   

20.
An interval extension of successive matrix squaring (SMS) method for computing the weighted Moore–Penrose inverse \(A^{\dagger }_{MN}\) along with its rigorous error bounds is proposed for given full rank \(m \times n\) complex matrices A, where M and N be two Hermitian positive definite matrices of orders m and n, respectively. Starting with a suitably chosen complex interval matrix containing \(A^{\dagger }_{MN}\), this method generates a sequence of complex interval matrices each enclosing \(A^{\dagger }_{MN}\) and converging to it. A new method is developed for constructing initial complex interval matrix containing \(A^{\dagger }_{MN}\). Convergence theorems are established. The R-order convergence is shown to be equal to at least l, where \(l \ge 2\). A number of numerical examples are worked out to demonstrate its efficiency and effectiveness. Graphs are plotted to show variations of the number of iterations and computational times compared to matrix dimensions. It is observed that ISMS is more stable compared to SMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号