首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Edible starch sodium octenyl succinate (SSOS) films, with or without glycerol as plasticizer, were prepared by solution‐casting method. The effect of SSOS concentration, degree of substitution (DS) of octenyl group, as well as glycerol content, on the properties of SSOS films was studied including tensile strength, water vapor permeability (WVP), and oil permeability (OP). The results indicated that the tensile strength of SSOS film was up to 39.4 ± 1.9 MPa when the concentration of SSOS was 0.05 g/mL and DS was 0.05. The increase of glycerol content resulted in a decrease of film tensile strength. WVP of SSOS films was relatively low. Meanwhile, study in OP showed that SSOS films were oilproof. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
从玉米黄粉中提取醇溶蛋白,对玉米醇溶蛋白进行脱色,制备了玉米醇溶蛋白膜,对膜的力学性能进行分析,对圣女果进行保鲜实验研究。结果表明:玉米醇溶蛋白提取工艺为固液比1∶10,乙醇溶液80%,拉伸强度为17.8 MPa,伸长率为4.91%,具有较好的保鲜效果,可延长圣女果的贮藏期。  相似文献   

3.
采用流延法制备高含量玉米醇溶蛋白(Zein)的Zein/壳聚糖(CS)复合膜,通过复合添加剂〔m(甘油):m(聚乙二醇400)=1:1〕对Zein/CS复合膜共混改性,研究复合添加剂添加量(以总溶液质量计,分别为0、0.5%、1.0%、1.5%、2.0%)对薄膜的力学、光学和热学性能等的影响,并通过SEM、FTIR对薄膜形貌和结构变化进行表征。结果表明,复合添加剂通过削弱Zein和CS之间的分子间作用力,达到增塑效果,薄膜综合机械性能有所改善,随着复合添加剂添加量的升高,薄膜断裂伸长率逐渐增强,拉伸强度呈下降再上升的趋势;水蒸气透过率逐渐增加,水接触角逐渐减小,薄膜亲水性随之增强。与不含复合添加剂的薄膜(ZC-0)相比,当复合添加剂添加量为1.5%时,复合膜(ZC-1.5)的抗拉强度降低了27.40%,断裂伸长率增长了39.87%,水蒸气透过率上升了29.10%。通过SEM和DSC观察,添加复合添加剂改性后,改善了Zein和CS之间的相容性,制备的薄膜表面更加平整光滑。综合性能可得,制备高含量Zein的Zein/CS复合膜,复合添加剂浓度为1.5%时,薄膜性能最优。并在含有1.5%复合添加剂的Zein/CS薄膜中添加了一定量的姜黄素,据测定其能够有效提高薄膜的抗氧化性能至55.18%。  相似文献   

4.
The effects of polymer composition, glycerol concentration and pH of film-forming solution on water vapor permeability (WVP), tensile strength (TS) and percentage elongation at break (%E) of composite edible film based on konjac glucomannan (KGM), chitosan and soy protein isolate (SPI) were investigated. Of the plasticizers tested, glycerol was found to be a suitable plasticizer regarding mechanical properties and WVP. The WVPs of the films were determined to be (3.29–9.63) × 10?11 g m?1 s?1 Pa?1, TS between 16.77 and 51.07 MPa, and %E between 1.29% and 10.73%, depending on film composition. Incorporation of SPI to the polymer matrix decreased both WVP and mechanical properties. Increase in both glycerol concentration and the pH of film-forming solution decreased WVP and TS but increased %E. The results suggest that film composition and the pH of film-forming solution are the major factors influencing the film properties.  相似文献   

5.
In order to obtain casein edible films with great packing performance, gelatin as the reinforcing additive with different ratios were loaded via two methods including layer- by- layer and blending. A comparative study on structure properties between double layers and blending films made from casein and gelatin was obtained by scanning electron microscopy and Fourier transform infrared spectroscopy. The difference between the films' packing characters were conducted by water vapor permeability (WVP), optical property, and mechanical properties (including tensile strength (TS) and elongation (EAB)). The results showed that the degree of films roughness increased and the structural stability decreased as the increase of gelatin additive ratio in both double layers and blending films. Thickness and WVP both displayed a trend of increasing first then decreasing at the dividing of gelatin instead of casein in 50%. Importantly, WVP values in double layers film with a largest value of 6.95 gm−1Pa−1s−1 was higher than blending films, observably (P < 0.05). Additionally, TS in blending film was increased by 23.44% than double layers film under the gelatin additive proportion of 70%, and EAB value in double layers film was larger by 207.65% than blending film under the gelatin additive proportion of 10%.  相似文献   

6.
In this study, the use of Pinhão husk as a source of reinforcement material for development of edible films, where the Pinhão seed flour and bovine gelatin were used as matrices for the films. Mechanical properties, water vapor permeability, solubility and opacity, microstructure, and thermal degradation characterized the films produced. The films presented homogeneous and cohesive structures. Pinhão husk content positively affected film properties by increasing tensile strength (TS) and decreasing water vapor permeability (WVP), with Pinhão flour film formulations (5.0% Pinhão flour, 1.2% glycerol, and 0.4% Pinhão husk) and gelatin (5.0% gelatin, 2.0% glycerol, and 0.4% Pinhão husk) those that presented the best results (5.06 MPa for TS and 0.14 g.mm/kPa.h.m2 for WVP) and (3.88 MPa for TS and 0.28 g.mm/kPa.h.m2 for WVP), respectively The thermal degradation study revealed that the films are stable at temperatures below 150°C, losing only free water and volatile compounds of low molecular weight. Pinhão husk can reinforce films, making them suitable as biodegradable and edible packaging materials for eco-friendly food products. This contributes to the circular economy, preserves biodiversity, and reduces plastic waste, offering promising sustainable packaging solutions.  相似文献   

7.
Sorghum wax, sorbitol, glycerin, and soy protein isolate (SPI) composite films were prepared. Effects of sorghum wax, sorbitol, and glycerin concentrations on various films were evaluated using response surface methodology. All independent variables significantly (P<0.05) affected film water vapor permeability (WVP), tensile strength (TS), elongation at break (E), total color difference, and total soluble matter (TSM). Increasing the sorghum wax concentration decreased WVP and E. As sorbitol content increased in the composite films, WVP and TS increased. Sorbitol had a critical point of 2–5 g/5 g SPI for low values of TSM. The addition of sorbitol contributed more to the properties of the film than did glycerin.  相似文献   

8.
The development of packaging films based on renewable materials is an important and active area of research today. This is the first extensive study focusing on film‐forming properties of an agrobiomass byproduct, namely, oat spelt arabinoxylan. A plasticizer was needed for cohesive film formation, and glycerol and sorbitol were compared. The tensile properties of the films varied with the type and amount of the polyol. With a 10% (w/w) plasticizer content, the films containing glycerol had higher tensile strength than the films containing sorbitol, but with a 40% plasticizer content, the result was the opposite. Sorbitol‐plasticized films retained their tensile properties better than films with glycerol during 5 months of storage. The films were semicrystalline with similar crystallinity indices of 0.20–0.26. The largest crystallites (9.5 nm) were observed in the film with 40% glycerol. The softening of films with 40% (w/w) glycerol started at a significantly lower relative humidity (RH) than that of the corresponding sorbitol‐containing films. The films with sorbitol also had lower water vapor permeability (WVP) than the films with glycerol. The films plasticized with 10% (w/w) sorbitol had a WVP value of 1.1 g mm/(m2·d·kPa) at the RH gradient of 0/54%. The oxygen permeability of films containing 10% (w/w) glycerol or sorbitol was similar: 3 cm3·μm/(m2·d·kPa) at 50–75% RH. A higher plasticizer content resulted in more permeable films. Permeation of sunflower oil through the films was not detected. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Edible films are alternative packaging, which have recently received much attention due mainly to environmental reasons. Edible films may be formed from edible biomaterials such as polysaccharides, proteins, or lipids. Among these biopolymers, chitosan is of interest because it has a good film-forming property and is biodegradable, biocompatible, and nontoxic. Several techniques have been used to prepare edible chitosan films with various degrees of success. However, it is always interesting to find an alternative technique to produce films of superior quality at shorter processing (drying) time. In this study, the influences of different drying methods and conditions on the drying kinetics and various properties of chitosan films were investigated. Drying at control conditions (ambient air drying and hot air drying at 40°C) as well as vacuum drying and low-pressure superheated steam drying (LPSSD) at an absolute pressure of 10 kPa were carried out at different drying temperatures (70, 80, and 90°C). The properties of chitosan films, in terms of color, tensile strength, percent elongation, water vapor permeability (WVP), glass transition temperature (Tg), and crystallinity, were also determined. Based on the results of both the drying behavior and film properties, LPSSD at 70°C was proposed as the most favorable conditions for drying chitosan films.  相似文献   

10.
Edible films are alternative packaging, which have recently received much attention due mainly to environmental reasons. Edible films may be formed from edible biomaterials such as polysaccharides, proteins, or lipids. Among these biopolymers, chitosan is of interest because it has a good film-forming property and is biodegradable, biocompatible, and nontoxic. Several techniques have been used to prepare edible chitosan films with various degrees of success. However, it is always interesting to find an alternative technique to produce films of superior quality at shorter processing (drying) time. In this study, the influences of different drying methods and conditions on the drying kinetics and various properties of chitosan films were investigated. Drying at control conditions (ambient air drying and hot air drying at 40°C) as well as vacuum drying and low-pressure superheated steam drying (LPSSD) at an absolute pressure of 10 kPa were carried out at different drying temperatures (70, 80, and 90°C). The properties of chitosan films, in terms of color, tensile strength, percent elongation, water vapor permeability (WVP), glass transition temperature (T g ), and crystallinity, were also determined. Based on the results of both the drying behavior and film properties, LPSSD at 70°C was proposed as the most favorable conditions for drying chitosan films.  相似文献   

11.
Nanocrystalline cellulose (NCC) reinforced poly(caprolactone) (PCL) composites were prepared by compression molding. The NCC content varied from 2 to 10% by weight. NCC played a significant role in improving the mechanical properties of PCL. The addition of 5 wt % NCC caused a 62% improvement of the tensile strength (TS) value of PCL films. Similarly, tensile modulus (TM) values were also improved by NCC reinforcement but elongation at break (Eb) values decreased montonically with NCC content. The water vapor permeability (WVP) of PCL was 1.51 g·mm/m2·day·kPa, whereas PCL films containing 5 wt % NCC showed a WVP of 1.22 g·mm/m2·day·kPa. The oxygen transmission rate (OTR) and carbon dioxide transmission rate (CO2TR) of PCL decreased by 19 and 17%, respectively, with 5 wt % NCC incorporation. It was found that the mechanical and barrier properties of both PCL and PCL‐NCC composites further improved with 10 kGy gamma irradiation treatment. The combination of NCC and radiation significantly increased the TS, TM, and Eb (by 156, 123, and 80%, respectively, compared to untreated PCL). The WVP, OTR, and CO2TR decreased by 25–35% with respect to untreated PCL. The surface and interface morphologies of the PCL‐NCC composites were studied by scanning electron microscopy and suggested homogeneous distribution of NCC within the PCL matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The polyaniline (PANI)–polyvinyl alcohol (PVA) conductive composite films [doped with hydrochloride (HCl), dodecylbenzene sulphonic acid and amino sulphonic acid (NH2SO3H) aqueous solution] were synthesised by ‘in situ’ polymerisation, and their conductivities were compared. Among these composite films, HCl–PANI–PVA composite film possessed the highest conductivity that reached 1360?S·m??1 [w(PVA)?=?40%]. Meanwhile, the effects of PVA content, HCl concentration, oxidant ammonium persulphate (APS) dosage, reaction time and film drying temperature on tensile strength of the HCl–PANI–PVA composite films were studied. The tensile strength of the film was improved greatly due to effective mixture of PANI and PVA. When the PVA content was 40%, C(HCl)?=?1.0?mol·L??1, reaction time was 4.0?h, n(APS)/n(aniline)?=?1.0 and film drying temperature was 80°C, and the tensile strength of the HCl–PANI–PVA composite film reached the maximum of 60.8?MPa. At the same time, the structure of composite materials was characterised and analysed through ultraviolet spectrum and SEM.  相似文献   

13.
采用溶液流延法以豌豆淀粉(PS)和聚乳酸(PLA)为原料制备了豌豆淀粉/聚乳酸(PS/PLA)双层薄膜。通过对双层薄膜的吸水性、溶解性、水蒸气透过性、拉伸性能、表面形貌等进行测试,研究了薄膜的力学性能、疏水性能以及水蒸气阻隔性能。结果表明:随着双层膜中聚乳酸层的比例增加,双层薄膜的吸水性、溶解性和水蒸气透过性逐渐降低,拉伸强度和拉伸模量逐渐增加,断裂伸长率逐渐下降,表明水蒸气阻隔效果明显,增加了膜的韧性,降低了膜的强度。当PLA和PS的质量比为50:50时,PS/PLA双层膜的拉伸强度为(13.47±0.75)MPa,拉伸模量为(0.848±0.002)GPa;断裂伸长率为(16.11±0.16)%,水蒸气透过系数为0.27×10-10 g·cm/(cm2·s·Pa)。  相似文献   

14.
Carbon nanotube (CNT) reinforced (0.05–0.5% by wt) polycaprolactone (PCL)‐based composites were prepared by compression molding. Addition of 0.2% CNT caused a 131% improvement of tensile strength (TS) of PCL films. The tensile modulus (TM) and elongation at break (Eb) of PCL were also significantly improved with the addition of CNT. The water vapor permeability of PCL was 1.51 g·mm/m2·day but 0.2% CNT containing PCL films showed 1.08 g·mm/m2·day. Similarly, the oxygen transmission rate (OTR) of PCL films was found to decrease with the addition of CNT. But, carbon dioxide transmission rate (CO2TR) of PCL film was improved due to incorporation of CNT. Effect of gamma radiation on PCL films and CNT reinforced PCL‐based composites were also studied. The TS of the irradiated (10 kGy) PCL films gained to 75% higher than control sample. The TS of the 0.2% CNT reinforced composite film was reached to 41 MPa at 15 kGy dose. The barrier properties of non‐irradiated and irradiated (10 kGy) PCL films and composites (0.2% CNT reinforced) were also measured. Both PCL films and composites showed lower values of WVP upon irradiation and indicated better water vapor barrier. The OTR and CO2TR of the irradiated (10 kGy) PCL films and composites were decreased compared to their counterparts. Surface and interface morphologies of the composites were studied by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
In this study, chitosan (C)/gelatin(G)/starch(S) composites incorporated pineapple peel extract (PPE) and aloe vera gel (AVG) were prepared by the casting method as antioxidant agents. Mechanical, water vapor permeability (WVP), moisture content, solubility, opacity, and color properties of the effects of PPE and AVG at different concentrations (0%, 10%, and 30%) were investigated. The prepared films were characterized by Fourier transform infrared spectroscopy in attenuated total reflection (ATR-FTIR), X-ray diffraction (XRD), Thermal gravimetric analysis (TGA), Scanning electron microscope (SEM), mechanical, water barrier, opacity, and color. PPE and AVG extract incorporated edible films improved thermal stability of edible films. Tensile strength decreased with the addition of extracts; the maximum tensile strength was 8.15 MPa for CGS film. The WVP of the films increased with the increasing PPE and AVG concentration. As a biological activity, the films inhibited the growth of gram-positive (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli). With the addition of PPE and AVG to the CGS film, its antioxidant properties were enhanced. In addition, the prepared films were applied for strawberry coating both in the refrigerator and at room temperature. Consequently, these edible-coated films can be used for active food packaging/coating to extend the shelf life of fruits.  相似文献   

16.
Isolated corn hull arabinoxylan was dissolved in water and provided a clear solution. Plasticizer (glycerol, propylene glycol, or sorbitol) was added to the arabinoxylan solution at 0–20 wt % (film dry weight), which was cast into stable films. Film thickness ranged from 22 to 32 μm. Mechanical properties, moisture content, and water vapor permeability (WVP) were studied for the arabinoxylan‐based films as a function of plasticizer concentration. Measured data for the corn hull arabinoxylan–based films were 13–18 wt % moisture content, 10–61 MPa tensile strength, 365–1320 MPa modulus, 6–12% elongation, and 0.23–0.43 × 10?10 g m?1 Pa?1 s?1 water vapor permeability. Plasticized arabinoxylan films produced in this study had lower WVPs than those of unplasticized films, which is likely attributable to the phenomenon known as antiplasticization. Scanning electron micrographs showed a homogeneous structure on film surfaces. Films containing sorbitol had the best moisture barrier properties. When grapes were coated with arabinoxylan and arabinoxylan/sorbitol films, weight loss rates of the fruit decreased by 18 and 41%, respectively, after 7 days. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2896–2902, 2004  相似文献   

17.
The heterogeneous crosslinking method was applied to chitosan films with citric acid to observe and understand the effect of a multifunctional acid at a low concentration on film properties. Neat and neutralized chitosan films and films containing 15% (w/w) citric acid (denoted as CA films) were characterized by mechanical, water vapor permeability (WVP), and thermogravimetric analysis tests. The CA films displayed a higher tensile strength by 10%, lower WVP by 30%, and higher thermal stability, compared to neutralized films. The crystalline structure converted back from tendon to Type II after the addition of citric acid, as determined by X-ray diffraction. Neat films displayed a lower water contact angle (72°) compared to neutralized and CA films (78°–79°). The heterogeneous method was also applied to incorporate a plasticizer into a neutralized film to potentially observe the glass transition using dynamic mechanical analysis. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48648.  相似文献   

18.
In this work, clay-based nanocomposites films were prepared by addition of clay-Na+ natural montmorillonite in pectin and hydroxypropyl methylcellulose (HPMC) matrices. Mechanical (tensile strength, elastic modulus, and elongation) and barrier (Water Vapor Permeability (WVP), and Oxygen permeability (O2P)) properties were investigated. From results, it was observed that the WVP and O2P decreased when nanoclay was included into the HPMC and pectin matrix films. Additionally, the incorporation of nanoclay in the films significantly improved the mechanical properties because the reinforcing effect of clay from its high aspect ratio and its enormous surface area. These results are very important in packaging area.  相似文献   

19.
《Polymer Composites》2017,38(12):2829-2840
The biocompatible polymer films show potential as an alternative to gels and patches used for topical delivery of therapeutics and cosmetics. The physical strength and antimicrobial activity of polymer films are important attributes for their topical applicability. Here, we have investigated the physical properties and antibacterial activity of six commonly used film forming polymers before and after formation of nanocomposites with gold nanoparticles (AuNP). The blank and AuNP loaded polymer films were prepared by solvent casting method and characterized for thickness, tensile strength, burst strength, skin adhesion strength, degree of swelling, and porosity. The antibacterial activity of the composite films was evaluated by zone‐of‐inhibition and spectrophotometric growth inhibition method against Staphylococcus aureus and Escherichia coli . The physical characterization showed that chitosan films casted using 1.5% w/w resulted in 76 MPa of tensile strength, while zein films required 40% w/w to show 23 MPa of tensile strength. The AuNP (250 μM; 35 nm) loaded polymer films showed significantly (p < 0.05) greater burst strength and skin adhesion strength compared with respective blank films. Among the polymers tested, only blank films of chitosan and zein showed antibacterial activity. On the other hand, all the AuNP loaded polymer films showed significantly (p < 0.05) greater antibacterial activity. The AuNP loaded chitosan film showed E. coli growth inhibition similar to tetracycline. Taken together, chitosan‐ and zein‐AuNP nanocomposite films showed better physical properties and antibacterial activity. POLYM. COMPOS., 38:2829–2840, 2017. © 2015 Society of Plastics Engineers  相似文献   

20.
Cellulose-based composites containing various amounts of SBA-15 mesoporous silica were prepared by NMMO-technology, and their morphologies, mechanical properties, permeability for oxygen and water vapor were studied. The investigation suggested that both the modified and unmodified mesoporous silica materials can improve the elongation at break of the cellulose films. However, the incorporation of the mesoporous silica materials can reduce the tensile strength of the films, and the modified one has less effect on that than the unmodified one. The composites films with rational mechanical properties have adjustable oxygen permeability (7.90 × 10?15–94.6 × 10?15 cm3 · cm/cm2 · s · Pa) and water vapor permeability (7.12 × 10?13–4.10 × 10?13 g · cm/cm2 · s · Pa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号