首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
李金全  张彬 《光电工程》2007,34(4):65-68,88
利用偏心高斯光束相干叠加的方法,建立了柱坐标系下环状光束的新模型.从广义衍射积分理论出发,经过大量数值计算分析,详细研究了环状光束通过球差透镜的聚焦特性,定量分析了环状光束的阶数L,M、偏心高斯光束的束腰宽度w0以及球差系数C4对聚焦光场实际焦点(轴上最大光强)位置以及轴上最大光强的影响.研究结果表明,本文提出的模型可统-描述基模高斯光束和环状光束.在透镜焦距和入射光束波长一定的情况下,环状光束通过球差透镜的聚焦特性不仅与透镜的球差系数C4有关,而且还与环状光束的阶数L,M以及偏心高斯光束的束腰宽度w0有关.  相似文献   

2.
Pu J  Zhang H 《Applied optics》1998,37(19):4200-4205
Expressions for describing Gaussian beams focused by a lens with spherical aberration have been derived. Numerical results show that, when the coefficient of the spherical aberration is negative, one can obtain flattened laser irradiance at two positions along the focused field. The larger the coefficient of negative spherical aberration, the larger the flatness is. The effect of the Fresnel number of the focusing lens on the flattened laser irradiance is also investigated.  相似文献   

3.
Lock JA 《Applied optics》2004,43(12):2545-2554
The efficiency of trapping an on-axis spherical particle by use of laser tweezers for a particle size from the Rayleigh limit to the ray optics limit is calculated from generalized Lorenz-Mie light-scattering theory and the localized version of a Gaussian beam that has been truncated and focused by a high-numerical-aperture lens and that possesses spherical aberration as a result of its transmission through the wall of the sample cell. The results are compared with both the experimental trapping efficiency and the theoretical efficiency obtained from use of the localized version of a freely propagating focused Gaussian beam. The predicted trapping efficiency is found to decrease as a function of the depth of the spherical particle in the sample cell owing to an increasing amount of spherical aberration. The decrease in efficiency is also compared with experiment.  相似文献   

4.
We discuss the Strehl ratio of systems with a Gaussian pupil and determine the range of validity of its approximate expression based on the aberration variance. The results given are equally applicable to propagation of Gaussian beams. The uniform and weakly truncated pupils are considered as limiting cases of a Gaussian pupil. We show that the approximate expression for Strehl ratio in terms of the aberration variance yields a good estimate of the true value for a strongly truncated pupil but a much smaller value for a weakly truncated pupil.  相似文献   

5.
平顶多高斯光束通过球差透镜的聚焦特性   总被引:5,自引:1,他引:4  
利用广义惠更斯-菲涅耳衍射积分公式,研究了平顶多高斯光束通过球差透镜的聚焦特性。推导出轴上光强分布的表达式,并对轴上光强进行大量的数值计算及分析。研究结果表明,当平顶多高斯光束的阶数N一定时,透镜的球差将在很大程度上影响光束的聚焦特性;当透镜的球差一定时,N值的改变将影响轴上最佳聚焦点的位置;当无球差时,轴上最佳聚焦点并不在几何焦点处,轴上最佳聚焦点位置随着N值增加向几何焦点靠近,例如当阶数N由0增大为1时,则归一化最佳聚焦点由0.91增大到0.98。  相似文献   

6.
Arguijo P  Scholl MS 《Applied optics》2003,42(16):3284-3289
When an off-axis paraboloidal mirror focuses a parallel beam, the image is formed on one side of the optical axis. For a tilted beam focused by an off-axis paraboloidal mirror, the focus is no longer pointlike (not considering the diffraction effect); rather, it is a distorted spot. This is due to the inherent aberrations of the surface. In addition, there is a change in the focus position. We calculate by exact ray-trace equations the modified wave-front aberration and express it in power series. Our formulation uses the optical path variation along a defined principal ray that we relate to the parameter that describe the surface and the beam angle of incidence. We designate this ray as that reflected by the center of the entrance pupil and field of view. We employ the direction cosines of the principal ray to compute the wave-front aberration function of a beam reflected by an off-axis paraboloid.  相似文献   

7.
In the paraxial Debye regime, simple and power-efficient pupil filters are designed to break the diffraction limit along a large depth of focus (DOF) for the Gaussian beam. Dependences of the superresolution factor, DOF gain, Strehl ratio, sidelobe strength, and axial intensity nonuniformity on the Gaussian profile in the pupil plane are characterized using the numerical method. Optimal filter designs are proposed for either high-resolution or ultra-large-DOF applications followed by experimental verifications.  相似文献   

8.
The diffraction of light on the lens of a Gaussian beam past a uniaxial crystal is equivalent to the beam diffraction on a helicoidal phase grating of two partial beams with different curvatures of the wave front. This diffraction significantly distorts the Gaussian beam profile and an extended region with three beam waists is formed near the focal plane. The beam waist region can be rectified by varying the radii of the primary beam waist and the lens pupil.  相似文献   

9.
The propagation characteristics of the kurtosis parameters of a standard Hermite–Gaussian (SHG) beam and of an elegant Hermite–Gaussian (EHG) beam, each passing through a fractional Fourier transformation (FRFT) system with a spherically aberrated lens, are studied in detail. Some numerical calculations are made by introducing an efficient algorithm, based on the Collins diffraction integral formula. The resulting graphs illustrate the striking difference between ideal FRFT systems and those with a spherically aberrated lens. The kurtosis parameters of both SHG and EHG beams passing through a type I Lohmann system with a spherically aberrated lens are seen to change with the fractional order periodically and the fundamental period is 4, but for type II the fundamental period is 2. Different values of spherical aberration coefficients affect the kurtosis parameters in greatly different ways. The values of the kurtosis parameters of a SHG beam passing through either type of Lohmann system with a spherically aberrated lens are no longer equal to those of an EHG beam, even when they have the same fractional orders and the same spherical aberration coefficients.  相似文献   

10.
We report here the generation of a chain of three-dimensional (3-D) optical bottle beams by focusing a π-phase shifted multi-ring hollow Gaussian beam (HGB) using a lens with spherical aberration. The rings of the HGB of suitable radial (k(r)) and axial (k(z)) wave vectors are generated using a double-negative axicon chemically etched in the optical fiber tips. Moving the lens position with respect to the fiber tip results in variation of the semi-angle of the cones of wave vectors of the HGBs and their diameter, using which we demonstrate tunability in the size and the periodicity of the 3-D optical bottle beams over a wide range, from micrometers to millimeters. The propagation characteristics of the beams resulting from focusing of single- and multi-ring HGBs and resulting in a quasi-non-diffracting beam and a chain of 3-D optical bottle beams, respectively, are simulated using only the input beam parameters and are found to agree well with experimental results.  相似文献   

11.
Young M 《Applied optics》2000,39(34):6519-6522
In this paper, we calculate the transverse spherical aberration TA of a thin lens and defines a normalized aberration Y equal to TA divided by the theoretical resolution limit. As a rule of thumb, (a) a thin lens that suffers only from spherical aberration may be considered effectively diffraction-limited as long as Y < 1.6. Similarly, (b) the coupling efficiency of a Gaussian beam to a single-mode fiber may be high even when Y > 1.6, and, specifically, (c) the lens need be diffraction-limited only over a radius approximately equal to the radius (to the 1/e-point) of the Gaussian beam.  相似文献   

12.
The forward scattering of a Gaussian laser beam by a spherical particle located along the beam axis is analyzed with the generalized Lorenz-Mie theory (GLMT) and with diffraction theory. Forwardscattering and near-forward-scattering profiles from electrodynamically levitated droplets, 51.6 μm in diameter, are also presented and compared with GLMT-based predictions. The total intensity in the forward direction, formed by the superposition of the incident and the scattered fields, is found to correlate with the particle-extinction cross section, the particle diameter, and the beam width. Based on comparison with the GLMT, the diffraction solution is accurate when beam widths that are approximately greater than or equal to the particle diameter are considered and when large particles that have an extinction efficiency near the asymptotic value of 2 are considered. However, diffraction fails to describe the forward intensity for more tightly focused beams. The experimental observations, which are in good agreement with GLMT-based predictions, reveal that the total intensity profile about the forward direction is quite sensitive to particle axial position within a Gaussian beam. These finite beam effects are significant when the ratio of the beam to the particle diameter is less than approximately 5:1. For larger beam-to-particle-diameter ratios, the total field in the forward direction is dominated by the incident beam.  相似文献   

13.
Particular higher-order sources give rise to electromagnetic Gaussian beams, which are linearly polarized and have their maximum in the propagation direction. For this dipolar beam the cross-sectional shape changes in the propagation direction. Nodal surfaces exist on which the tangential component of the electric field vanishes in the standing wave that is formed by the two oppositely directed dipolar, electromagnetic Gaussian beams. These surfaces are identified as the mirror shapes for an open resonator that supports this standing wave. For standing waves that have a particular cross-sectional shape at the waist the cross section of the beam near the mirror surfaces is circular. The resonant frequencies for the fundamental transverse mode of such a resonator have been determined as a function of the geometry and the axial mode number. By a perturbation technique the resonant frequency of an open resonator with spherical mirrors has been obtained. This result is valid in only the paraxial approximation. Illustrative numerical results are included.  相似文献   

14.
Lock JA 《Applied optics》2004,43(12):2532-2544
Calculation of the radiation trapping force in laser tweezers by use of generalized Lorenz-Mie theory requires knowledge of the shape coefficients of the incident laser beam. The localized version of these coefficients has been developed and justified only for a moderately focused Gaussian beam polarized in the x direction and traveling in the positive z direction. Here the localized model is extended to a beam tightly focused and truncated by a high-numerical-aperture lens, aberrated by its transmission through the wall of the sample cell, and incident upon a spherical particle whose center is on the beam axis. We also consider polarization of the beam in the y direction and propagation in the negative z direction to be able to describe circularly polarized beams and reflected beams.  相似文献   

15.
A new solution to the 2-D scalar wave equation is presented which describes an ultrasonic beam maintaining the lateral field response expressed by the sinc function over a finite depth of field. This new beam is realizable with a linear array transducer, and less subject to diffraction spreading than conventional focused beams, physically, it is a superposition of plane waves having the same wavelength, but traveling at different angles. It is shown by numerical simulation that the beam can provide more uniform lateral beamwidth and smoother on-axis field magnitude over a greater depth of field than the rectangular transducers and Gaussian apodized transmitters which have been used to increase the limited depth of field of conventional focused beams. Compared with currently developed limited diffraction beams which must be generated by 2-D array transducers, the beam has a wider lateral beamwidth but with lower sidelobe levels. In ultrasonic medical imaging, the beam enables one to obtain a line focus using a 1-D array transducer and to eliminate the diffraction correction required in some applications such as tissue characterization  相似文献   

16.
依据斯特列尔判断,采用解线性方程组的方法讨论了高斯光束初级和高级球差的最佳校正形式,并以表格方式给出了最佳校正形式。讨论了按照均匀光波最佳校正形式对高斯光束进行像差平衡时的中心点亮度变化,研究表明,在工程实际中,采用普通光学系统的像差平衡理论对激光光学系统进行设计是完全可行的。  相似文献   

17.
In their work on diffraction [J. Opt. Soc. Am.51, 1050 1961], Osterberg and Smith have computed in an exact manner from the Rayleigh-Sommerfeld diffraction integral of the first kind the irradiance distribution along the axis of a converging spherical wave, and they found that in a scalar optical system of high relative aperture and finite value of Fresnel number, the central peak value of the axial irradiance may occur inside, at, or outside the geometrical focal point as the angular semiaperture of the system is less than, equal to, or greater than, respectively, a particular angle that falls near 70 degrees . These findings are now reexamined using a different assumption that takes into account diffraction at the edge of the aperture. Different results are obtained that agree well with the predictions of other theories of diffraction of light and give confidence to the common conclusions drawn by investigators of the effect of focal shift, that the point of the principal maximum of axial irradiance is not at the geometrical focus but shifted toward the aperture in systems of different relative aperture and finite value of Fresnel number.  相似文献   

18.
The Rayleigh-Sommerfeld theory is applied to diffraction of a spherical wave by a grating. The grating equation is obtained from the aberration-free diffraction pattern, and its aberrations are shown to be the same as the conventional aberrations obtained by using Fermat's principle. These aberrations are shown to be not associated with the diffraction process. Moreover, it is shown that the irradiance distribution of a certain diffraction order is the Fraunhofer diffraction pattern of the grating aperture as a whole aberrated by the aberration of that order.  相似文献   

19.
Yura HT 《Applied optics》1995,34(15):2774-2779
The mean on-axis far-field (or focal-plane) irradiance of a Gaussian beam that is truncated by a circular aperture in the presence of atmospheric turbulence is considered. In the absence of turbulence, an accurate analytic approximation for the irradiance distribution that is valid within the main central lobe of the beam is presented. Based on this approximation, the mean on-axis far-field irradiance and the corresponding turbulence Strehl ratio for the truncated Gaussian beam are then obtained. By maximization of the on-axis irradiance, the optimum ratio of the beam diameter to the aperture diameter in the presence of turbulence is obtained, and the results for the corresponding maximum on-axis irradiance as a function of the strength of turbulence are presented. In particular, for D/r(0) > 1, where D is the aperture diameter and r(0) is Fried's coherence length, optimum truncation of a Gaussian beam and uniform illumination of a circular aperture (where the same total power isuniformly distributed over the aperture) result in the same on-axis irradiance in the presence of uncompensated turbulence.  相似文献   

20.
Abstract

Analysis of the expression for Strehl ratio for a circularly symmetric pupil allows one to design complex filters that offer reduced sensitivity to spherical aberration. It is shown that filters that combine hyper-Gaussian amplitude transmittance with hyper-Gaussian phase modulation provide five-fold reduction in sensitivity to spherical aberration. Furthermore, this is achieved without the introduction of zeros into the modulation transfer function and deconvolution can restore the transfer function to that of a diffraction-limited imager. The performance of the derived combined amplitude and phase filter is illustrated through the variation of its axial intensity versus spherical aberration. This technique is applicable to imaging in the presence of significant amounts of spherical aberration as is encountered in, for example, microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号