首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 757 毫秒
1.
The distribution of odor-evoked neuronal activity in the antennal lobes of the blowfly Calliphora vicina has been studied by means of [3H] 2-deoxyglucose (2-DG) uptake. Stimulation with natural attractants like meat or cheese induced uptake of 2-DG in a large number of glomeruli, stimulation with the single odorant butyric acid only in a small number of glomeruli. In control brains, the majority of glomeruli showed low 2-DG uptake. The distribution of labeled glomeruli was odor-specific and consistent in different specimen. The labeling patterns evoked by different odors overlapped partially but were clearly distinct. The highest uptake within the glomeruli was found in the axons of antennal receptor neurons. The present data provide evidence that different odors are represented as defined spatial patterns of activity across the antennal lobe glomeruli. The overlapping patterns suggest that certain glomeruli participate in the nervous processing of different odors.  相似文献   

2.
In ants, antennal movements support the stimulus perception of olfactory and mechanosensory sensilla, most of which are located on the distal part of the antenna. In addition, sensory hair plates, campaniform sensilla, and Janet's organ provide the ant with proprioceptive information about the position, velocity, and acceleration of their antennae. We describe the morphology of these proprioceptors and their afferent neurons with special reference to the trap-jaw ant genus Odontomachus. All these sensory neurons terminate in the dorsal lobe, the part of the brain that also contains antennal motor neurons and that controls antennal movements. Neurons originating from campaniform sensilla and Janet's organ send additional collaterals into the subesophageal ganglion. Particularly fast antennal movements occur during protective withdrawal of the antenna. Under natural conditions, antennal retraction in Odontomachus always precedes the rapid mandible strike. We have found no indication of monosynaptic coupling between the antennal proprioceptive afferents and the trigger motor neurons that release the mandible strike. Instead, complex neuronal interactions in the involved neuromeres are more likely to control the timing of the two reflexes. The normal behavioral sequence of antennal retraction can be reversed by artificially releasing the mandible strike earlier than normal. The significance of fast antennal reflexes and of proprioceptive control is discussed.  相似文献   

3.
The antennal lobes (ALs), the primary olfactory centers, of the moth Manduca sexta are sexually dimorphic. Only ALs of males possess the macroglomerular complex (MGC), the site of primary processing of information about the female's sex pheromone. To understand the development of identified, odor-specific olfactory glomeruli, we investigated the cellular events involved in the morphogenesis of the MGC by means of various fluorescence staining techniques and laser-scanning confocal microscopy. The MGC lies near the entrance of the antennal nerve into the AL of the adult male and comprises three glomeruli, the globular cumulus and two toroidal structures. The MGC forms during early stages of metamorphic adult development through a stereotyped sequence of coordinated changes in MGC-specific receptor axons, glial cells, and early-ingrowing projection neurons of the medial group of AL neurons. The MGC divisions are the earliest glomeruli to form in the male AL, and their basic organization is established within about 3 days after ingrowth of the first sensory axons. Despite their special anatomical features, the MGC glomeruli develop in a manner similar to that of the ordinary glomeruli. Comparison of the ALs of males and females reveals that two relatively large and early-developing glomeruli that are situated dorsolaterally in the female AL appear to be female-specific. Development of the sexually dimorphic glomeruli diverges immediately after the ingrowth of the first olfactory receptor axons, resulting in the formation of these large glomeruli in females and the MGC in males.  相似文献   

4.
Low doses of fenvalerate (a Type II pyrethroid) were applied to the beetle Tenebrio molitor at pupation, to ascertain its effects on the developing olfactory system. Doses of fenvalerate that prevent the formation of glomeruli in the primary olfactory neuropil (antennal lobes) also inhibit olfactory orientation behavior for different odors, despite the fact that sensory neurons developed responses to these odors. Even when lower amounts of fenvalerate that allowed glomeruli to develop were applied to pupae, the olfactory behavior was affected. Therefore, the formation of glomerular structures within the antennal lobe is not sufficient to establish olfactory behavior. A possible reason for this developmental effect of fenvalerate is a change in the odotopic arrangement of sensory axons within the glomeruli.  相似文献   

5.
During an entire lifetime, sensory axons of regenerating olfactory receptor neurons can enter glomeruli in the olfactory bulb and establish synaptic junctions with central neurons. The role played by astrocytes in this unique permissiveness is still unclear. Glomerular astrocytes have been identified by immunocytochemistry for glial fibrillary acidic protein and S100 proteins at the light and electron microscopic levels. The latter labeling included submicroscopic lamellar and filopodial extensions of astroglial processes. Cell bodies and processes accumulate along the border between juxtaglomerular walls and glomerular neuropil. Within glomeruli, a network of astroglial processes encloses mesh-like neuropil zones devoid of astroglia. Electron microscopy confirmed the division into subcompartments of glomerular neuropil: 1) The "sensory-synaptic subcompartment" includes all sensory axon terminals and terminal dendritic branches receiving sensory input, whereas astroglia are excluded; 2) in the "central-synaptic subcompartment," astroglial processes are intermingled with other neuropil components: dendrites of relay cells and interneurons, dendrodendritic synapses, centrifugal (cholinergic and serotonergic) axons, their axodendritic synapses, and blood vessels. Unevenly distributed astroglial processes in this subcompartment are attached to vascular basal laminae, stem dendrites, and subpopulations of dendrodendritic synapses, especially those colocalized with centrifugal projections ("triadic synapses"). Astroglia-free parts of the "central" subcompartment contain segments of dendrites and subpopulations of dendrodendritic synapses. Because of the subdivision of the glomerular neuropil into portions with and without glial components, glia do not completely demarcate the border between the "sensory" and the "central" subcompartments. Interdigitation between the subcompartments varies among glomeruli and even within a single glomerulus. The mesh width of astroglial networks covaries with numerical relations between sensory and dendrodendritic synapses. This distribution pattern of astrocytes suggests that these glial cells monitor brain-derived effects on olfactory glomerular neuropil rather than olfactory input and that astroglial processes are (re-)arranged accordingly.  相似文献   

6.
In leech, the central annulus of each midbody segment possesses seven pairs of sensilla, which are mixed clusters of primary peripheral sensory neurons that extend their axons into the CNS where they segregate into distinct fascicles. Pathway selection by individual afferent growth cones of sensillar neurons was examined by double labeling using intracellular dye-filling with antibody labeling in early Hirudo medicinalis embryos. The monoclonal antibody Lan3-2 was used because sensillar neuronal tracts are specifically labeled by this antibody. Examining 68 individually filled neurons we found that sensillar neuron growth cones bifurcate within the CNS, that they project long filopodia capable of sampling the local environment, and that all of them appeared to choose a single particular CNS fascicle without apparent retraction or realignment of growth cones. Furthermore, each side of the bifurcating afferent growth cones always chose the same fascicle, implying a specific choice of a distinct labeled pathway. By dye-filling individual central neurons (P-cells), we show that there are centrally projecting axons present at the time sensillar afferents enter the ganglionic primordia and select a particular fascicle, and we confirm that at least the dorsal peripheral nerve is likely to be pioneered by central neurons, not by the peripheral afferents. In the sensillum studied here, we found examples of sensory neurons extending axons into one of all the available fascicles. Thus, an individual embryonic sensillum possesses a heterogeneous population of afferents with respect to the central fascicle chosen. This is consistent with the idea that segregation into distinct axon fascicles may be based upon functional differences between individual afferent neurons. Our findings argue strongly in favor of specific pathway selection by afferents in this system and are consistent with previous suggestions that there exists a hierarchy of cues, including surface glycoconjugates that mediate navigation of the sensillar growth cones and the fasciculation of their axons.  相似文献   

7.
Odors evoke synchronized oscillations and slow temporal patterns in antennal lobe neurons and fast oscillations in the mushroom body local field potential (LFP) of the locust. What is the contribution of primary afferents in the generation of these dynamics? We addressed this question in two ways. First, we recorded odor-evoked afferent activity in both isolated antennae and intact preparations. Odor-evoked population activity in the antenna and the antennal nerve consisted of a slow potential deflection, similar for many odors. This deflection contained neither oscillatory nor odor-specific slow temporal patterns, whereas simultaneously recorded mushroom body LFPs exhibited clear 20-30 Hz oscillations. This suggests that the temporal patterning of antennal lobe and mushroom body neurons is generated downstream of the olfactory receptor axons. Second, we electrically stimulated arrays of primary afferents in vivo. A brief shock to the antennal nerve produced compound PSPs in antennal lobe projection neurons, with two peaks at an approximately 50 msec interval. Prolonged afferent stimulation with step, ramp, or slow sine-shaped voltage waveforms evoked sustained 20-30 Hz oscillations in projection neuron membrane potential and in the mushroom body LFP. Projection neuron and mushroom body oscillations were phase-locked and reliable across trials. Synchronization of projection neurons was seen directly in paired intracellular recordings. Pressure injection of picrotoxin into the antennal lobe eliminated the oscillations evoked by electrical stimulation. Different projection neurons could express different temporal patterns in response to the same electrical stimulus, as seen for odor-evoked responses. Conversely, individual projection neurons could express different temporal patterns of activity in response to step stimulation of different spatial arrays of olfactory afferents. These patterns were reliable and remained distinct across different stimulus intensities. We conclude that oscillatory synchronization of olfactory neurons originates in the antennal lobe and that slow temporal patterns in projection neurons can arise in the absence of temporal patterning of the afferent input.  相似文献   

8.
In situ hybridization has demonstrated mRNA for olfactory receptors (OR) in the axon terminals of olfactory receptor neurons. Neurons that express the same OR appear to send their axons to two stereotyped glomeruli in the olfactory bulb (OB). Based on these observations, we tested the feasibility of using RT-PCR to isolate and sequence OR mRNA from small samples of the rat OB glomerular layer. Biomagnetic mRNA isolation followed by RT-PCR yielded partial sequences for 21 novel members of the OR family. The results suggest that the topography of OR mRNA can be mapped across the OB, to study synaptic specificity and odor representation in the olfactory system.  相似文献   

9.
NADPH-d histochemistry was used to investigate presumptive nitric oxide synthase (NOS)-containing neurons in the crayfish olfactory midbrain. Three anatomically different types of local olfactory interneurons exhibiting NADPH-d activity were observed: two pairs of large interneurons as well as positively stained globuli cells. Branches derived from the large interneurons were confined to the ipsilateral olfactory lobe and accessory lobe, but only a few branches innervated the olfactory lobe glomeruli. Local field potential recordings on the olfactory lobe showed that administration of SNP or SIN-1 (10-4 M) into the brain had reversible inhibitory effects on electrically-evoked responses of unidentified neuronal cell populations.  相似文献   

10.
Mormyrid electric fish have species- and sex-typical electric organ discharges (EODs). One class of tuberous electroreceptors, the knollenorgans, plays a critical role in electric communication; one function is species recognition of EOD waveforms. In this paper, we describe cell types in the knollenorgan central pathway, which appear responsible for analysis of the temporal patterns of spikes encoded by the knollenorgans in response to EOD stimuli. Secondary sensory neurons in the nucleus of the electrosensory lateral line lobe (NELL) act as relays of peripheral responses. They fire a single phase-locked spike to an outside positive-going voltage step. Axons from the NELL project to the toral nucleus exterolateralis pars anterior (ELa). Immediately after they enter the ELa, they send collaterals to terminate on one to three ELa large cells and then continue in a lengthy neuronal pathway that traverses the ELa several times. After a path length of up to 5 mm, the NELL axon terminates on as many as 70 ELa small cells. Thus the large cells appear to be excited first, followed by the small cells, with the intervening length of the axon serving as a delay line. The large cells also respond with phase-locked spikes to voltage steps. Large cell axons extend for approximately 1 mm and terminate on several small cells within the ELa. The terminals are known to be GABAergic inputs and are presumed inhibitory. We propose that small cells receive direct inhibition from large cells and delayed excitation from NELL axons. The small cells may act as anti-co-incidence detectors to analyze the temporal structure of the EOD waveform.  相似文献   

11.
Adult worker honey bees alter their behaviour with age but retain a strong reliance on sensory information from the antennae. The antennae house a diverse array of receptors, including mechanoreceptors, hygroreceptors, olfactory receptors, and contact chemoreceptors, which relay information to the brain. Antennal sensory neurons that project to the antennal lobes of the brain converge onto second-order interneurones to form discrete spheres of neuropil, called glomeruli. The spatial organisation of glomeruli in the antennal lobes of the honey bee is constant, but the central distribution of information from receptors tuned to different sensory modalities is unknown. Here we show that the glomerular neuropil of the antennal lobes undergoes constant modification during the lifetime of the adult worker bee. Changes in morphology are site specific and highly predictable. The total volume of the glomerular neuropil of the antennal lobe increased significantly during the first 4 days of adult life. Each of the five readily identifiable glomeruli examined in this study exhibited a unique pattern of growth. The growth of two of the five glomeruli changed dramatically with the shift to foraging duties. Furthermore, significant differences were identified between the antennal lobes of bees performing nectar- and pollen-foraging tasks. The highly compartmentalized nature of the antennal lobes, the ease with which specific glomeruli can be identified, and the predictability of changes to the antennal lobe neuropil make this an ideal system for examining the mechanisms and behavioural consequences of structural plasticity in primary sensory centres of the brain.  相似文献   

12.
Freshwater crayfish increase in size throughout their lives, and this growth is accompanied by an increase in the length of the appendages and number of mechanoreceptive and chemoreceptive sensilla on them. We find that in the Australian freshwater crayfish Cherax destructor, neuropil volumes of the olfactory centers increase linearly with body size over the entire size range of animals found in their natural habitat. The number of cell somata of two groups of interneurons associated with the olfactory centers (projection neurons and small local neurons) also increases linearly with the size of the animals. In contrast, axon counts of interneurons that represent a nonolfactory input to the olfactory centers show that these reach a total number in the very early adult stages that then remains constant regardless of the size of the animal. Only the axon diameter of these interneurons increases linearly with body size. Amputation of the antennule and olfactory sensilla reduces the number of projection and local interneurons on the amputated side. No change in the size of the olfactory centers occurs on the unamputated side. Amputation of the olfactory receptor neurons in crayfish therefore leads not only to a degeneration of the receptor cell endings in the olfactory lobe but also to a trans-synaptic response in which the number of higher order neurons decreases. Reconstitution of the antennule and olfactory receptor neurons in small adult crayfish is accompanied by the reestablishment of the normal number of interneurons and neuropil volume in the olfactory centers.  相似文献   

13.
To characterize the fine morphology of individual reticulospinal axons at multiple spinal segments, localized injections of the anterograde neural tracer, Phaseolus vulgaris leucoagglutinin (PHA-L), were made into the nucleus reticularis pontis oralis (NRPo) of the cat. Following survival periods of 6-8 weeks, labelled axons, between 1 and 8 microns in diameter, were found throughout the cervical and upper thoracic segments. Thick axons (diameter > or = 3 microns) were found to descend beyond the upper thoracic spinal cord, while most thin axons (diameter < 3 microns) ended in the upper cervical cord. From serial transverse sections (50 microns) of segments C3 to T2, in four cats, the trajectories of 23 single, thick reticulospinal axons were traced in continuity over distances of between 21.8 and 59.4 mm, corresponding to 3 and 8 segments, respectively. Most axons gave off at least one, and as many as four collaterals per segment, some preferentially in the cervical enlargement. The remainder gave off collaterals at most but not all segments. Detailed reconstruction of the collateralization and arborization in the spinal gray matter showed two major termination types, one where terminals remained ipsilateral to the stem axon, the other where additional collaterals extended across the midline from the ipsilateral gray matter to terminate in the contralateral gray matter. Axons tended to have collaterals of one type or the other, irrespective of the rostrocaudal level. Both ipsilateral and bilateral projections terminated mainly in laminae VII or VIII although the branching patterns varied from axon to axon. Individual stem axons, in general, showed similar termination patterns at each level.  相似文献   

14.
In addition to receptor-type pinealocytes, the mammalian pineal organ contains small and large neurons and ependymal/glial cells as well. Axons of pinealocytes form synaptic ribbon-containing axo-dendritic synapses on large secondary pineal neurons and/or terminate as neurohormonal endings on the basal lamina of the vascular surface of the organ. The small pineal neurons were found to be gamma-aminobutyric acid (GABA)-immunoreactive, while large secondary neurons and pinealocytes contained immunoreactive amino acids (glutamate and aspartate). Glutamate accumulated presynaptically in pinealocytic axon terminals on large secondary neurons and in the axons of these neurons. Glutamate immunoreactive axons of pineal neurons were traced via the pineal tract to the habenular nucleus. Axons containing granular vesicles and coming from extrapineal perikarya are glutamate immunoreactive as well. Aspartate and GABA are also present in some of the myelinated axons, supposedly pinealopetal in the pineal tract.  相似文献   

15.
Although the principalis nucleus (Vp) contains trigeminothalamic and internuclear tract cells, the functional and morphologic differences between the two kinds of neurons have remained unsettled. The present study was aimed to address these problems by using the intracellular horseradish peroxidase injection technique in the cat. Of 20 neurons stained, 7 and 13 were located in the dorsomedial subnucleus (Vpd) and ventrolateral subnucleus (Vpv) of Vp, respectively. The Vpd neurons received input from the intraoral structures only but the Vpv neurons from the intraoral or facial structures. Nineteen neurons could be divided as class I and class II, based on the branching pattern of their stem axons. Class I (eight neurons) had an ascending stem axon without branching. Class II was divided into two subclasses (IIa and IIb). Class IIa (eight neurons) had an ascending stem axon from which branches were given off. Their branches formed a local-circuit restricted to the lower brainstem. Class IIb (three neurons) had a stem axon that formed the local-circuit only. The dendritic morphology was indistinguishable between different classes of neurons and between the subdivisions. Although the dendritic arborization pattern was governed by the location of the somata, it was suggested to be also important elements for determining primary afferent arborizations. In the brainstem nuclei, the jaw-closing motor nucleus received the highest density of projections from class II neurons with the receptive field involving the periodontal ligaments. The present study provides new findings that Vp neurons could be divided into three distinct populations and suggests that each population exerts a distinct function with respect to sensory discrimination, sensorimotor reflexes, or both.  相似文献   

16.
The molecular mechanisms mediating chemosensory discrimination in insects are unknown. Using the enhancer trapping approach, we identified a new Drosophila mutant, lush, with odorant-specific defects in olfactory behavior. lush mutant flies are abnormally attracted to high concentrations of ethanol, propanol, and butanol but have normal chemosensory responses to other odorants. We show that wild-type flies have an active olfactory avoidance mechanism to prevent attraction to concentrated alcohol, and this response is defective in lush mutants. This suggests that the defective olfactory behavior associated with the lush mutation may result from a specific defect in chemoavoidance. lush mutants have a 3-kb deletion that produces a null allele of a new member of the invertebrate odorant-binding protein family, LUSH. LUSH is normally expressed exclusively in a subset of trichoid chemosensory sensilla located on the ventral-lateral surface of the third antennal segment. LUSH is secreted from nonneuronal support cells into the sensillum lymph that bathes the olfactory neurons within these sensilla. Reintroduction of a cloned wild-type copy of lush into the mutant background completely restores wild-type olfactory behavior, demonstrating that this odorant-binding protein is required in a subset of sensilla for normal chemosensory behavior to a subset of odorants. These findings provide direct evidence that odorant-binding proteins are required for normal chemosensory behavior in Drosophila and may partially determine the chemical specificity of olfactory neurons in vivo.  相似文献   

17.
This work represents an attempt to elucidate structural features of electrophysiologically characterized, individual cat dorsal spinocerebellar tract (DSCT) neurons by using intracellular application of horseradish peroxidase (HRP). Intracellular recordings and HRP injections were made in DSCT neurons of the Clarke's column in cat lumbar (L3) spinal cord. The units were identified by antidromic invasion following electrical stimulation of the ipsilateral dorsolateral funiculus at C1. In addition, sensory inputs to the DSCT neurons were determined by natural (adequate) stimuli applied to the hind limb with intact innervation. The morphological analysis is based on data obtained from 19 well-stained electrophysiologically identified neurons located in Clarke's column. Thirteen of these units received excitatory sensory inputs from muscle receptors, two were activated by cutaneous afferents only, and four had a convergent (muscle + cutaneous) input. The DSCT--muscle cells were equivalent to the large Clarke cells (class C of Leowy, '70). Their dendrites were oriented primarily in the rostro--caudal direction (up to 2500 micron) and appeared generally smooth except for some branchlets. In four of these cells, the axon was traced into the lateral funiculus. In light microscopic analysis there was no evidence that axon collaterals arose from these axons during the initial trajectory through the spinal grey matter. The four DSCT--convergent neurons were similar in shape to the DSCT--muscle units although they appeared to have somewhat smaller cell bodies. Of the two DSCT--cutaneous neurons one was found to be of the B type, with the dendritic tree having fewer branches and oriented mainly in the medio--lateral direction. The other cell, however, turned out to be similar in appearance to the C type Clarke neurons.  相似文献   

18.
Odor information is first represented in the brain by patterns of input activity across the glomeruli of the olfactory bulb (OB). To examine how odorants are represented at this stage of olfactory processing, we labeled anterogradely the axons of olfactory receptor neurons with the voltage-sensitive dye Di8-ANEPPQ in zebrafish. The activity induced by diverse natural odorants in afferent axons and across the array of glomeruli was then recorded optically. The results show that certain subregions of the OB are preferentially activated by defined chemical odorant classes. Within these subregions, "ordinary" odorants (amino acids, bile acids, and nucleotides) induce overlapping activity patterns involving multiple glomeruli, indicating that they are represented by combinatorial activity patterns. In contrast, two putative pheromone components (prostaglandin F2alpha and 17alpha, 20beta-dihydroxy-4-pregnene-3-one-20-sulfate) each induce a single focus of activity, at least one of which comes from a single, highly specific and sensitive glomerulus. These results indicate that the OB is organized into functional subregions processing classes of odorants. Furthermore, they suggest that individual odorants can be represented by "combinatorial" or "noncombinatorial" (focal) activity patterns and that the latter may serve to process odorants triggering distinct responses such as that of pheromones.  相似文献   

19.
Two glial cell types surround olfactory axons and glomeruli in the olfactory bulb (OB) and may influence synapse development and regeneration. OB astrocytes resemble type-1 astrocytes, and OB ensheathing cells resemble non-myelinating Schwann cells. We have produced clonal OB astrocyte and ensheathing cell lines from rat neonatal and adult OB cultures by SV40 large T antigen transduction. These cell lines have been characterized by morphology, growth characteristics, immunophenotype, and ability to promote neurite outgrowth in vitro. Neonatal and adult ensheathing cell lines were found to support higher neurite outgrowth than OB astrocyte lines. Neonatal OB astrocyte lines were of two types, high and low outgrowth support. The low support astrocyte lines express J1 and a chondroitin sulfate-containing proteoglycan as do astrocytes encircling the neonatal glomeruli in vivo. The adult OB astrocyte cell lines supported lower levels of outgrowth than adult ensheathing cell lines. These results are consistent with a positive role for ensheathing cells in OB synapse regeneration, in vivo. Further, based on our results, we hypothesize that ensheathing cells and high-outgrowth astrocytes facilitate axon growth in vivo, while low outgrowth astrocytes inhibit axon growth and may facilitate glomerulus formation.  相似文献   

20.
Locus coeruleus axons project to cerebellar cortex in coeruleocerebellar cultures, where they make functional contacts, and also appear as fine fibers in the outgrowth zones. The predominant catecholamine of locus coeruleus neurons in culture is dopamine. When coeruleocerebellar cultures are exposed to cytosine arabinoside to destroy cerebellar granule cells and functionally compromise glia, there is a resultant increase of Purkinje cell survival and a sprouting of Purkinje cell recurrent axon collaterals, plus an increase of catecholaminergic axons accompanied by a doubling of tissue dopamine content. If such reorganized cultures are transplanted with granule cells and glia, a second round of plastic changes ensues in which the Purkinje cell population and the recurrent axon collaterals are reduced to control levels, but catecholaminergic axons and dopamine content remain increased. The maintenance of catecholaminergic axons does not appear to depend on the persistence of target neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号