首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excess biomass produced during biological treatment of municipal wastewater represents a major issue worldwide, as its disposal implies environmental, economic and social impacts. Therefore, there has been a growing interest in developing technologies to reduce sludge production. The main proposed strategies can be categorized according to the place inside the wastewater treatment plant (WWTP) where the reduction takes place. In particular, sludge minimization can be achieved in the wastewater line as well as in the sludge line. This paper presents the results of two pilot scale systems, to evaluate their feasibility for sludge reduction and to understand their effect on biomass activity: (1) a pilot plant with an ozone contactor in the return activated sludge (RAS) stream for the exposition of sludge to a low ozone dosage; and (2) an oxic-settling-anaerobic (OSA) process with high retention time in the anaerobic sludge holding tank have been studied. The results showed that both technologies enabled significant excess sludge reduction but produced a slight decrease of biomass respiratory activity.  相似文献   

2.
臭氧作为强氧化剂和杀菌剂,此前被广泛应用于污水处理系统以改善污水出水水质,近年来在剩余污泥原位减量方面得到了广泛的关注.首先,总结了臭氧处理对剩余污泥原位减量和脱水性能的影响;其次,归纳了臭氧联合厌氧消化技术对污泥资源化的促进作用;接着,从无害化角度总结了臭氧处理对污泥中痕量有机物降解的影响;最后,对臭氧处理污泥技术的...  相似文献   

3.
以臭氧氧化污泥工艺为模型,通过把曝气池产生的剩余污泥进行臭氧处理后,变成可生物降解的有机物,然后流回曝气池被微生物重新利用来实现污泥的零排放。从理论上研究了,只需要把H=3/(1+2S_e/S_a)倍的预计剩余污泥进行臭氧氧化处理,即把曝气池实际产生的剩余污泥进行臭氧处理,然后回流到曝气池进行生物降解,就可以实现剩余污泥零排放。臭氧氧化污泥工艺剩余污泥零排放的理论可行性,为剩余污泥零排放工艺的设计和运行提供理论支持。同时分析了许多成功的实例,进一步验证了理论。  相似文献   

4.
臭氧氧化剩余污泥的影响因素分析及应用初探   总被引:2,自引:0,他引:2  
通过小试得出臭氧氧化剩余污泥的最佳作用条件,并将该作用条件应用于实际废水的剩余污泥减量化中,进行能耗分析。在臭氧氧化污泥过程中,采用单因素分析法分别考察臭氧投加量、剩余污泥浓度、碱解以及热解预处理对污泥减量的影响。在小试基础上,结合实际情况,对某污水处理厂污泥进行了不同污泥浓度下的减量试验,验证了小试结果,得出针对该种污泥MLSS=8.287kg/m3,臭氧最佳投加量在0.038gO3/gMLSS左右,所需能耗为0.589kW.h/kgMLSS。  相似文献   

5.
Effect of ozonation on sludge reduction in a SBR plant.   总被引:1,自引:0,他引:1  
This paper provides new insights on the application of the ozonation process for the reduction of activated sludge production in a Sequencing Batch Reactor. The study was performed on two identical lab-scale SBRs plant, fed with domestic sewage: a fraction (1/3 of the working volume) of the activated sludge from one reactor (Exp SBR) was periodically subjected to ozonation for 30 minutes at 0.05 g O(3)/gSS and then recirculated before the beginning of the cycle; the other reactor was used as control and therefore managed at the same sludge retention time but without the application of ozonation. The effects of the recirculation of the ozonated sludge to the Exp SBR were evaluated in terms of biological nitrogen and carbon removal efficiencies, Mixed Liquor Volatile and Suspended Solids (MLSS and MLVSS, respectively) concentrations, effluent quality and sludge settleability. Besides, characterization of the ozonated sludge was carried out for different oxidant dosages (0.05, 0.07 and 0.37 g O(3)/gSS) and durations of the ozonation process (10, 20 and 30 minutes). The results show that at 0.05 g O(3)/gSS and 30 minutes contact time MLVSS as well as MLVSS/MLSS ratio do not change appreciably. Ozone dosage must be increased much further to obtain a relevant effect.  相似文献   

6.
Disposal of sewage sludge is forbidden and agricultural use of stabilized sludge will be banned in 2005 in Switzerland. The sludge has to be dewatered, dried, incinerated and the ashes disposed in landfills. These processes are cost intensive and lead also to the loss of valuable phosphate resources incorporated in the sludge ash. The implementation of processes that could reduce excess sludge production and recycle phosphate is therefore recommended. Partial ozonation of the return sludge of an activated sludge system reduces significantly excess sludge production, improves settling properties of the sludge and reduces bulking and scumming. The solubilized COD will also improve denitrification if the treated sludge is recycled to the anoxic zone. But ozonation will partly inhibit and kill nitrifiers and might therefore lead to a decrease of the effective solid retention time of the nitrifier, which reduces the safety of the nitrification. This paper discusses the effect of ozonation on sludge reduction, the operation stability of nitrification, improvement of denitrification and gives also an energy and cost evaluation.  相似文献   

7.
Sludge bulking is still a problem in the operation of state-of-the-art wastewater treatment plants (WWTPs). The ozonation of returned activated sludge (RAS) is an innovative option as a non-specific measure for the control of filament growth. The applicability of sludge ozonation for bulking control of a large wastewater treatment plant was investigated. At a full-scale WWTP one lane was equipped with a sludge ozonation plant for RAS. The implemented sludge ozonation of RAS was tested against the two identical references lanes of the same WWTP. The positive effect on settleability could be clearly proven. Low-dose sludge ozonation could be a technical alternative in comparison with the established chemical measures for bulking control.  相似文献   

8.
This paper provides new insights on the application of the ozonation process for the reduction of the activated sludge production in a sequencing batch reactor (SBR). The study was performed in two identical lab-scale SBRs plant, one for experimental activities (Exp SBR) and one used as control (Control SBR), both fed with domestic sewage. A fraction of the activated sludge collected from the Exp SBR at the end of the aerobic react phase was periodically subjected to ozonation for 30 minutes at three different specific dosages (0.05, 0.07 and 0.37 g O(3)/gSS) and then recirculated before the beginning of the following cycle.Recirculation of the ozonated sludge to the Exp SBR did not appreciably affect the efficiency of the biological nitrogen and carbon removal processes. Nonetheless, an improvement of the denitrification kinetic was observed. Mixed liquor volatile and suspended solids (MLSS and MLVSS, respectively) concentrations in the reactor decreased significantly with time for long term application of the ozonation treatment. Kinetic batch tests on unstressed sludge taken from Control SBR indicated that the different oxidant dosages (0.05, 0.07 and 0.37 g O(3)/gSS) and durations of the ozonation process (10, 20 and 30 minutes) used remarkably affected chemical oxygen demand (COD) and organic nitrogen fractioning. In particular, soluble and biodegradable fractions seemed to be higher at lower dosage and longer contact time.  相似文献   

9.
A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.  相似文献   

10.
As a new sludge reduction technology with a phosphorus removal mechanism, a vibration milling technology that uses iron balls have been applied to the wastewater treatment process. Three anaerobic-aerobic cyclic activated sludge processes: one without sludge disintegration; one disintegrated sludge by ozonation; and the other disintegrated sludge with the vibrating ball mill were compared. Ozonation achieved the best sludge reduction performance, but milling had the best phosphorus removal. This is because iron was mixed into the wastewater treatment tank due to abrasion of the iron balls, leading to settling of iron phosphates. Thus, the simple means of using iron balls as the medium in a vibrating ball mill can achieve both a sludge reduction of half and excellent phosphorus removal. Material balances in the processes were calculated and it was found that carbon components in disintegrated sludge were more resistant to biological treatment than nitrogen.  相似文献   

11.
通过中试分析了以减量化为目的的微型动物捕食系统中活性污泥的特性.结果表明,细菌分散培养段的悬浮污泥浓度比原生动物捕食段约高15%,比大型微型动物捕食段约高40%;微型动物的捕食作用在减少剩余污泥产率的同时,可以提高悬浮污泥的沉降性能约36%,轮虫可作为该系统污泥沉降性能的指示生物;低底物浓度下,大型微型动物的捕食活动可以增强污泥的活性.  相似文献   

12.
Thermal treatment applied in association with a biological system allows for a significant reduction in excess sludge production (approximately 50%). In general, heat treatment is described as a sludge disintegration technique. This paper offers a thorough study on the impact of heat treatment, at temperatures below 100 degrees C, on the solubilisation of the sludge COD and its biodegradability. Discontinuous heating experiments were performed on activated and digested sludge. At all temperatures tested the released COD for digested sludge was systematically higher than that for activated sludge (15 and 40%, respectively, at 95 degrees C for 40 min of contact time). For the first 30 min, a 1st order kinetic, with respect to the residual COD, was systematically found. In the range of 40-95 degrees C, digested sludge had a lower activation energy than activated sludge (26 kcal/mol compared to 70-160 kcal/mol). COD solubilisation is thus more positively influenced by temperature in the case of activated sludge. This may be due to the significant difference in the ratio of protein/carbohydrate in digested and activated sludge (1-5 and 0.2-0.7, respectively). The increase in the COD/TKN ratio in the solubilised fraction after thermal treatment of activated sludge suggests a preferential solubilisation of proteins over carbohydrates. Respirometric tests performed on the solubilised COD showed that whatever the sludge origin, only 40-50% of released COD is biodegradable at a conventional hydraulic retention time (i.e., 24 h). Hence, heat treatment would act more through organic matter solubilisation rather than by a biodegradability increase.  相似文献   

13.
Activated sludge has been widely used in wastewater treatment throughout the world. However, the biggest disadvantage of this method is the by-production of excess sludge in a large amount, resulting in difficulties in operation and high costs for wastewater treatment. Technological innovations for wastewater treatment capable of reducing excess sludge have thus become research topics of interest in recent years. In our present research, we developed a new biological wastewater treatment process by repeated coupling of aerobes and anaerobes (rCAA) to reduce the excess sludge during the treatment of wastewater. During 460-day continuous running, COD (300-700 mg/L) and TOC (100-350 mg/L) were effectively removed, of which the removal rate was above 80 and 90%, respectively. SS in the effluent was 13 mg/L on average in the rCAA bioreactor without a settling tank. The on-site reduction of the excess sludge in the rCAA might be contributed by several mechanisms. The degradation of the grown aerobes after moving into the anaerobic regions was considered to be one of the most important factors. Besides, the repeatedly coupling of aerobes and anaerobes could also result in a complex microbial community with more metazoans and decoupling of the microbial anabolism and catabolism.  相似文献   

14.
Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.  相似文献   

15.
Observations on ozone treatment of excess sludge.   总被引:2,自引:0,他引:2  
This work experimentally studied the effects of ozonation treatment on waste sludge. During the treatment process, various parameters characterizing sludge were investigated. A substantial reduction in the volume of sludge and the release of intracellular and extracellular materials were observed. With the increase of ozone dose, the settleability and water content of sludge improved obviously, but the filterability of sludge deteriorated drastically. In addition, the evolution of particle size was evaluated, which proved the breakup of sludge flocs and cells. There existed a threshold of ozone dose which was 0.04 gO(3)/gMLSS in this work. Above the threshold, the soluble chemical oxygen demand (SCOD), protein, carbohydrate, total nitrogen and total phosphorus in supernatant increased remarkably and the electron transport system (ETS) sludge activity decreased. Organic nitrogen and organic phosphorus occupied the main part of total nitrogen and total phosphorus in the supernatant.  相似文献   

16.
This paper shows the potential application of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery. The process incorporated ozonation for excess sludge reduction and crystallisation process for phosphorus recovery to a conventional anaerobic/oxic (A/O) phosphorus removal process. A lab-scale continuous operation experiment was conducted with the ratio of sludge flow rate to ozonation tank of 1.1% of sewage inflow under 30 to 40 mgO3/gSS of ozone consumption and with sludge wasting ratio of 0.34% (one-fifth of a conventional A/O process). Throughout the operational experiment, a 60% reduction of excess sludge production was achieved in the new process. A biomass concentration of 2300 mg/L was maintained, and the accumulation of inactive biomass was not observed. The new process was estimated to give a phosphorus recovery degree of more than 70% as an advantage of excess sludge reduction. The slight increase in effluent COD was observed, but the process performance was maintained at a satisfactory level. These facts demonstrate an effectiveness of the new process for excess sludge reduction as well as for phosphorus recovery.  相似文献   

17.
We sampled benthic macroinvertebrates above and below a point source effluent in La Tordera stream (NE, Spain) over 2001–2002 to assess the effects of nutrient enrichment on the structure, and taxonomic composition of the benthic macroinvertebrate community. Below the point source, discharge, specific conductance and nutrient concentrations were higher than at the upstream reach, while dissolved oxygen (DO) decreased. Macroinvertebrate density was higher at the downstream reach than at the upstream reach on most dates but the two reaches did not differ in macroinvertebrate biomass. On average, taxa richness at the upstream reach was 20% higher than at the downstream reach. Several taxa, especially mayflies, stoneflies and caddisflies, were present only at the upstream reach. Shannon diversity was similar between the two reaches on 50% of the dates. Ordination analysis clearly separated the samples of the upstream reach from the samples of the downstream reach in the first axis and corroborated the effect of the point source on the benthic community. The two reaches followed a similar temporal pattern with respect to the distribution of taxa along the second axis of the ordination analysis. Higher similarities between the two reaches in taxa composition, densities and biomass after the spates of April and May 2002, suggest that flooding events may act as a reset mechanism for benthic communities and play an important role in stream restoration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A new process configuration combining anaerobic digestion with ozonation, and operated at long SRT, was studied with the objective of on-site reduction in sludge quantity and improving biogas recovery. The process performance with respect to solid reduction efficiency and other important process parameters like accumulation of inorganic solids, changes in sludge viscosity and dewatering characteristics were evaluated from the data of long term pilot scale continuous experiments conducted using a mixture of primary and secondary municipal sewage sludge. Due to sludge ozonation and long SRT, high VSS degradation efficiency of approximately 80% was achieved at a reactor solid concentration of 6.5%. A high fraction of inorganic solid (>50%) consisting mainly of acid insoluble and iron compounds was found to accumulate in the reactor. The high inorganic content accumulated in the digested sludge did not, however, contribute to the observed increase in sludge viscosity at high solid concentration. The sludge viscosity was largely found to depend on the organic solid concentration rather than the total solid content. Moreover, higher inorganic content in the digested sludge resulted in better sludge dewaterability. For a quick assessment of the economic feasibility of the new process, an economic index based on the unit cost of digested sludge disposal to unit electric cost is proposed.  相似文献   

19.
An integrated anaerobic-aerobic treatment system of sulphate-laden wastewater was proposed here to achieve low sludge production, low energy consumption and effective sulphide control. Before integrating the whole system, the feasibility of autotrophic denitrification utilising dissolved sulphide produced during anaerobic treatment of sulphate rich wastewater was studied here. An upflow anaerobic sludge blanket reactor was operated to treat sulphate-rich synthetic wastewater (TOC=100 mg/L and sulphate=500 mg/L) and its effluent with dissolved sulphide and external nitrate solution were fed into an anoxic biofilter. The anaerobic reactor was able to remove 77-85% of TOC at HRT of 3 h and produce 70-90 mg S/L sulphide in dissolved form for the subsequent denitrification. The performance of anoxic reactor was stable, and the anoxic reactor could remove 30 mg N/L nitrate at HRT of 2 h through autotrophic denitrification. Furthermore, sulphur balance for the anoxic filter showed that more than 90% of the removed sulphide was actually oxidised into sulphate, thereby there was no accumulation of sulphur particles in the filter bed. The net sludge productions were approximately 0.15 to 0.18 g VSS/g COD in the anaerobic reactor and 0.22 to 0.31 g VSS/g NO3- -N in the anoxic reactor. The findings in this study will be helpful in developing the integrated treatment system to achieve low-cost excess sludge minimisation.  相似文献   

20.
Microbial safety of a full-scale ozonation and biological activated carbon (BAC) process was investigated by examining pathogens, microbial community and particle counts, with emphasis on the BAC effluent. The process is located at South China, where the average humidity and air temperature were 70-80% and 22-24 °C, respectively. A high diversity of microbial community existed on the BAC media. Three types of dominant bacteria were identified, including Chryseobacterium indologenes, Bacillus brevis and Pseudomonas stutzeri, accounting for 90-95% of total bacteria number. As to pathogenic bacteria and viruses, an opportunistic pathogen, Bacillus cereus, was detected on the BAC. Six types of invertebrates were also observed on the medium, including rotifer, cyclops, nematode, clodecera, nauplius and blood worm. Diversity and number of invertebrates in the BAC effluent were higher than those in the BAC influent. Particle counts were generally less than 50 CNT/mL, with the maximum of 500 CNT/mL during the initial filtration stage after backwashing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号