首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1− x )(Na0.5K0.5)NbO3–(Bi0.5K0.5)TiO3 solid solution ceramics were successfully fabricated, exhibiting a continuous phase transition with changing x at room temperature from orthorhombic, to tetragonal, to cubic, and finally to tetragonal symmetries. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal ferroelectric phases was found at 2–3 mol% (Bi0.5K0.5)TiO3 (BKT), which brings about enhanced piezoelectric and electromechanical properties of piezoelectric constant d 33=192 pC/N and planar electromechanical coupling coefficient k p=45%. The MPB composition has a Curie temperature of 370°–380°C, comparable with that of the widely used PZT materials. These results demonstrate that this system is a promising lead-free piezoelectric candidate material.  相似文献   

2.
(1 – x )(Bi0.8La0.2)(Ga0.05Fe0.95)O3· x PbTiO3 (BLGF-PT) crystalline solutions have been fabricated by solid-state reactions. BLGF-PT has single perovskite phase structure with a rhombohedral–tetragonal (FEr-FEt) morphotropic phase boundary (MPB) at a PT content of x = 0.43. Lanthanum substitution has been found to increase the insulation resistance and decrease the coercive field down to 20 kV/cm, which results in significant improvements in dielectric and piezoelectric properties of BLGF-PT. The dielectric constant, loss tangent, Curie temperature, remnant polarization, piezoelectric d 33 constant, and planar coupling factor of 1760, 0.05, 264°C, 33 μC/cm2, 295 pC/N, and 0.36, respectively, have been achieved for BLFG-PT in the vicinity of the MPB. Compared with conventional Pb(Zr,Ti)O3 (PZT) piezoelectric ceramics, the BLGF-PT is a competitive alternative piezoelectric material with decreased lead content.  相似文献   

3.
Low-temperature phase relations in (Pb,La)Zr0.65Ti0.35O3 ceramics were determined as a function of La content and temperature. Dielectric and piezoelectric measurements and X-ray data were used to locate and identify phase transitions. The FE1-FE2 transition between rhombohedral ferroelectric phases occurs at higher temperatures as the La eontent is increased. For x >4, where x is the atom % La substituted for Pb, a phase region exists between the paraelectric and ferroelectric states. Dielectric data suggest that this region is antiferroelectric. For 6< x <9 a field-induced phase transition accompanies poling. Poled material with x ∼8 exhibits unusual mechanical properties.  相似文献   

4.
BiScO3–PbTiO3 (BSPT) thin films near the morphotropic phase boundary were successfully fabricated on Pt(111)/Ti/SiO2/Si substrates via an aqueous sol–gel method. The thin films exhibited good crystalline quality and dense, uniform microstructures with an average grain size of 50 nm. The dielectric, ferroelectric, and piezoelectric properties of the sol–gel-derived BSPT thin films were investigated. A remanent polarization of 74 μC/cm2 and a coercive field of 177 kV/cm were obtained. The local effective piezoelectric coefficient d *33 was 23 pC/N at 2 V, measured by a scanning probe microscopy system. The dielectric peak appeared at 435°C, which was 80°C higher than that of Pb(Ti, Zr)O3 thin films.  相似文献   

5.
Complex material parameters (piezoelectric coefficient d31, elastic s11E, and the dielectric constant K33) of the relaxor ferroelectric ceramic (1-x) Pb(Mg1/3Nb2/3)O3-xPbTiO3(x =.07) with 1% La (lanthanum) were measured as a function of bias field using a bar resonator. The values of the dielectric and piezoelectric phase angles are found to be comparable (i.e., around 0.04 for a d.c. bias field of 2.5 kV/cm), while the elastic phase angle is an order of magnitude smaller (0.001 for the same d.c. bias). For comparison of complex material parameters found from bar resonators, a sample in the form of a small disk is used to measure Poisson's ratio as well as the real components of the piezoelectric and elastic coefficients as a function of bias field.  相似文献   

6.
The effects of 0–5 mol% addition of La(Mg2/3Nb1/3)O3 (LMN) on the phase transition and ferroelectric behaviors of Pb[(Mg1/3Nb2/3)1-xTix]O3 (PMNT) ceramics with compositions near the morphotropic phase boundary (MPB) were studied. An evolution of structure from rhombohedral to tetragonal was found with increasing PbTiO3 (PT) content across the MPB (at ∼32.5 mol% PT), and a coexistence of both rhombohedral and tetragonal phases was also found at the MPB. The dual-phase field extended toward the lower PT content side of the MPB, and, moreover, the rhombohedrality or tetragonality was reduced, especially for the compositions near the MPB, by the addition of La in PMNT. The ferroelectric transition was found to change from normal to diffuse as the La content increased and the compositions became more rhombohedral. In accordance with the structural evolution, the change of remanent polarization ( P r) and coercive field ( E c) also became gradually indistinct, and both P r and E c were reduced. For compositions near the MPB, both PMNT and La-modified PMNT had a similar electromechanical factor ( k p) in a range around 0.55–0.60, but the mechanical quality factor ( Q m) was significantly reduced for the La-modified PMNT. The piezoelectric coefficient ( d 33), however, was largely improved with increasing La content in PMNT of compositions at MPB. A high value of d 33∼ 815 pC/N was obtained for the 5-mol%-La-modified ceramics, but it was associated with a low value of Q m.  相似文献   

7.
(1− x )(K0.48Na0.52)(Nb0.95Ta0.05)O3– x LiSbO3 [(1− x )KNNT− x LS] lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal phases was identified in the composition range of 0.03< x <0.05. The ceramics near the MPB exhibit a strong compositional dependence and enhanced electrical properties. The (1− x )KNNT– x LS ( x =0.04) ceramics exhibit good electrical properties ( d 33=250 pC/N, k p=45.1%, k t =46.3%, T c=348°C, T o − t =74°C, P r=25.9 μC/cm2, E c=10.7 kV/cm, ɛr∼1352, tan δ∼3%). These results show that (1− x )KNNT– x LS ceramic is a promising lead-free piezoelectric material.  相似文献   

8.
Ceramics with the chemical compositions of Pb1− x La2 x /3(Nb0.95Ti0.0625)2O6 (0≤ x ≤0.060) (PLTN) were prepared by the conventional solid-state reaction method. X-ray diffraction analysis indicated that Ti and La doping not only decreased the rhombohedral–tetragonal phase transformation temperature, but also stabilized the orthorhombic phase of PLTN ceramics. All ceramics sintered at 1190°–1250°C had shown the pure orthorhombic ferroelectric phase. La doping suppresses grain growth and inhibits the formation of pores and cracks, resulting in an increase in relative density up to 97%. The amount of La doping to PLTN ceramics obviously affect ceramics' piezoelectric constant ( d 33) and dielectric loss (tanδ). The sample with x =0.015 possesses high Curie temperature ( T c=560°C), low dielectric loss (tanδ=0.0054), and excellent piezoelectric constant ( d 33=92 pC/N), presenting a high potential to be used in high-temperature applications as piezoelectric transducers.  相似文献   

9.
Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) with 0–6 at.% lanthanum was prepared by the conventional mixed oxide method. Each composition was calcined at 800–900°C for 2–5 h to form a pure perovskite phase. Green pellets were sintered at 1050–1150°C for 1–4 h to obtain dense ceramics with at least 95% of theoretical density. X–ray diffraction (XRD) showed phase distortion as lanthanum was added to this system. Meanwhile, a small amount of La was found to affect the grain size and had an influence on the poling conditions and electrical properties. The BNT–based composition with 1 at.% La doping provided a dielectric constant ( K ) of 560, a piezoelectric charge constant ( d 33) of 92 pC/N, and a hydrostatic piezoelectric coefficient ( d h) of 72 pC/N.  相似文献   

10.
Lead-free potassium sodium niobate-based piezoelectric ceramics (1− x )(Na0.5K0.5)NbO3– x BiScO3 (KNN–BS) ( x =0∼0.05) have been prepared by an ordinary sintering process. Single perovskite phase of KNN–BS exhibits an orthorhombic symmetry at x <0.015 and pseudocubic symmetry at x >0.02, separating by a MPB at 0.015≤ x ≤0.02. Piezoelectric and ferroelectric properties are significantly enhanced in the MPB, which are as follows: piezoelectric constant d 33=203 pC/N, planar coupling coefficient k p=0.36, remnant polarization P r=24.4 μC/cm2. These solid solution ceramics look promising as a potential lead-free candidate materials.  相似文献   

11.
The control of the microstructure of Ce-doped Al2O3/ZrO2 componsites by the valence change of cerium ion has been demonstrated. Two distinctively different types of microstructure, large Al2O3 grains with intragranular ZrO2 particles and small Al2O3 grains with intergranular ZrO2 particles, can be obtained under identical presintering processing conditions. At doping levels greater than ∼ 3 mol% with respect to ZrO2, Ce3+ raises the alumina grain-boundary to zirconia particle mobility ratio. This causes the breakaway of grain boundary from particles and the first type of microstructure. On the other hand, Ce4+ causes no breakaway and produces a normal intergranular ZrO2 distribution. The dramatic effect of Ce3+ on the relative mobility ratio is found to be associated with fluxing of the glassy boundary phase and is likewise observed for other large trivalent cation dopants. The ZrO2 second phase acts as a scavenger for these trivalent cations, provided their solubility limit in ZrO2 is not exceeded.  相似文献   

12.
[(K x Na1− x )0.95Li0.05](Nb0.95Ta0.05)O3 (K x NLNT) ( x= 0.40–0.60) lead-free piezoelectric ceramics were prepared by conventional solid-state sintering. The effects of K/Na ratio on the dielectric, piezoelectric, and ferroelectric properties of the K x NLNT ceramics were studied. The experimental results show that the electrical properties strongly depend on the K/Na ratio in the K x NLNT ceramics. The K x NLNT ( x =0.42) ceramics exhibit enhanced properties ( d 33∼242 pC/N, k p∼45.7%, k t∼47%, T c∼432°C, T o−t =48°C, ɛr∼1040, tanδ∼2.0%, P r∼26.4 μC/cm2, E c∼10.3 kV/cm). Enhanced electrical properties of the K x NLNT ( x =0.42) ceramics could be attributed to the polymorphic phase transition near room temperature. These results show that the K x NLNT ( x =0.42) ceramic is a promising lead-free piezoelectric material.  相似文献   

13.
La-doped 0.3Pb(Zn1/3Nb2/3)O3–0.7Pb(Zr x Ti1− x )O3 ( x =0.5–0.53) piezoelectric ceramics with pure perovskite phase were synthesized by a two-step hot-pressing route. The piezoelectric properties of various compositions near the morphotropic phase boundary (MPB) were systematically investigated. Not only was the exact MPB of this system determined via X-ray diffractometry analysis, but also the peak of piezoelectric properties was found near the MPB. The optimum piezoelectric properties of this series were observed in the specimen with Zr/Ti=51/49. The piezoelectric coefficient ( d 33) and electromechanical coupling factor ( k p) were 845 pC/N and 0.70, respectively, which have not been reported in this system so far. Large permittivity (ɛr=4088) and permittivity maximum (ɛm=29 500) were also obtained for the poled specimens. The temperatures ( T max) of the permittivity maxima ranged from 206° to 213°C with various Zr/Ti ratios.  相似文献   

14.
The 0.95(Na0.5K0.5)NbO3–0.05SrTiO3 (0.95NKN–0.05ST) ceramics formed in this study had a porous microstructure with small grains and low piezoelectric properties due to their low density. However, when a small amount of Na2O was intentionally subtracted from the 0.95NKN–0.05ST ceramics, a liquid phase was formed, which led to increased density and grain size. Piezoelectric properties were also improved for the Na2O-subtracted 0.95NKN–0.05ST ceramics. The increased density and grain size were responsible for the enhancement of the piezoelectric properties. In particular, the 0.95(Na0.49K0.5)NbO2.995–0.05ST ceramics showed high piezoelectric properties of d 33=220, k p=0.4, Q m=72, and ɛ3To=1447, thereby demonstrating their promising potential as a candidate material for application to lead-free piezoelectric ceramics.  相似文献   

15.
Pure calcium lanthanum sulfide (CLS) powders with various La/Ca ratios were prepared by a carbonate coprecipitation method and CS2 sulfurization. Four coprecipitation processes were investigated by conventional titration, and a suitable means for coprecipitating CLS was found. By that process, a cation solution containing La3+ and Ca2+ ions was added to the precipitation medium (an anion solution of ammonium carbonate) with stirring. Precursors with various La/Ca ratios were synthesized and then sulfurized for 3 h using CS2 as a sulfurizing agent. In the range of La/Ca ratios from 2 to 5, the intermediate phase of sulfide powder was LaS2, and the CLS formation temperature could be increased by increasing the La/Ca ratio. For powder with high La/Ca ratios (La/Ca = 10, 15), and LaS2intermediate phase formed at low temperature (700°C), a (β-La2S3 minor phase at 800°C, and a pure CLS phase after 950°C treatment. The resulting pure CLS powder was spherical, with slight necking in the submicrometer range.  相似文献   

16.
Lead-free piezoelectric ceramics (Na1− x K x )(Nb1− y Sb y )O3+ z mol% MnO2 have been prepared by a conventional solid-state sintering technique. Our results reveal that Sb5+ diffuses into the K0.5Na0.5NbO3 lattices to form a solid solution with a single-phase orthorhombic perovskite structure. The partial substitution of Sb5+ for B-site ion Nb5+ decreases the paraelectric cubic-ferroelectric tetragonal phase transition ( T c) and the ferroelectric tetragonal-ferroelectric orthorhombic phase transition ( T O–F), and retains strong ferroelectricity. A small amount of MnO2 is enough to improve the densification of the ceramics. The co-effects of MnO2 doping and Sb substitution lead to significant improvements in ferroelectric and piezoelectric properties. The ceramics with x =0.45–0.525, y =0.06–0.08, and z =0.5–1 exhibit excellent ferroelectric and piezoelectric properties: d 33=163–204 pC/N, k P=0.47–0.51, k t=0.46–0.52, ɛ=640–1053, tan δ=1.3–3.0%, P r=18.1–22.6 μC/cm2, E c=0.72–0.98 kV/mm, and T C=269°–314°C.  相似文献   

17.
Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics of pure perovskite structure were prepared by the two-stage method with the addition of 0–3.0 wt% MnO2 and their piezoelectric properties were investigated systematically. The MnO2 addition influences in a pronounced way both the crystal structure and the microstructure of the materials. The materials are transformed from the tetragonal to the rhombohedral structure, and the grain size is enhanced when manganese cations are added. The distortion of crystal structure for samples with MnO2 addition can be explained by the Jahn–Teller effect. The values of electromechanical coupling factor ( k p) and dielectric loss (tan δ) are optimized for 0.5-wt%-MnO2-doped samples ( k p= 0.60, tan δ= 0.2%) and the mechanical quality factor ( Q m) is maximized for 1.0-wt%-MnO2-doped samples ( Q m= 1041), which suggests that oxygen vacancies formed by substituting Mn3+ and Mn2+ ions for B-site ions (e.g., Ti4+ and Zr4+ ions) in the perovskite structure partially inhibited polarization reversal in the ferroelectrics. The ceramics with 0.50–1.0 wt% MnO2 addition show great promise as practical materials for piezoelectric applications.  相似文献   

18.
NaNbO3, KNbO3, and K x Na(1− x )NbO3 powders were successfully prepared by the hydrothermal method. The phase of the products was identified to be orthorhombic structure by X-ray diffraction (XRD) technique, and the XRD results revealed that the x value of the K x Na(1− x )NbO3 gradually increased with the increase in the ratio of K+ to Na+ in alkaline solution. The morphology and the microstructure were investigated by scanning electron microscopy, energy-dispersive spectroscopy, and transmission electron microscopy, and the results indicated that the ratio of K+ to Na+ in the solution had a great effect on the morphology and the size of products. Na0.5K0.5NbO3 with morphotropic phase boundary composition could be synthesized when the molar ratio of K+ to Na+ was between 4:1 and 6:1 in the solution. A possible formation mechanism of the K x Na(1− x )NbO3 crystal was also proposed based on the experimental results.  相似文献   

19.
Lead-free piezoelectric Na x K1− x NbO3 ( x =20–80 mol%) ceramics were fabricated using spark plasma sintering at a low temperature (920°C). All the Na x K1− x NbO3 ceramics showed a similar orthorhombic phase structure, while the corresponding lattice parameters decreased from the KNbO3 side to the NaNbO3 side with increasing Na content. A discontinuous change in lattice parameter close to composition of 60 mol% Na indicated the presence of a transitional area that is similar to the morphotropic phase boundary (MPB) in Na x K1− x NbO3 ceramics. The sintered density of the Na x K1− x NbO3 ceramics decreased with increasing Na content, from a relative density of 99% for the K-rich side to 92% for the Na-rich side. The piezoelectric constant d 33 and planar mode electromechanical coupling coefficient k p showed a maximum value of 148 pC/N and 38.9%, respectively, due to the similar MPB effects in the PZT system.  相似文献   

20.
The electromechanical and electric-field-induced strain properties of x Pb(Yb1/2Nb1/2)O3· y PbZrO3·(1− x − y )PbTiO3 ( x = 0.12, 0.25, 0.37; y = 0.10–0.40) ceramics have been studied systematically as a function of Pb(Yb1/2Nb1/2)O3 (PYN) content and PbZrO3/PbTiO3 (PZ/PT) ratio. In addition, the effect of MnO2 on the electromechanical properties of 0.12Pb(Yb1/2Nb1/2)O3·0.40PbZrO3·0.48PbTiO3 was also investigated. The maximum transverse strain values of 1.6 × 10−3 for x = 0.12, 1.45 × 10−3 for x = 0.25, and 1.36 × 10−3 for x = 0.37 were obtained at the compositions which were regarded as the morphotropic phase boundary (MPB). The transverse strain was maximized at the MPB composition. The value of the maximum electromechanical coupling coefficient was 0.69 for y = 0.40 and x = 0.12 composition. In the 0.12Pb(Yb1/2Nb1/2)O3·0.40PbZrO3·0.48PbTiO3 composition, the temperature of the maximum dielectric constant decreased and the grain size increased with an addition of MnO2. The electromechanical coupling coefficient decreased while the mechanical quality factor rapidly increased with an addition of MnO2. These resulted mainly from the acceptor effect of manganese ions that were produced by doping MnO2 into the perovskite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号