首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
The effects of microalloying of Ti and B on the glass formation of Cu60Pr30Ni10Al10-2xTixBx(x = 0, 0.05% (atom fraction)) amorphous alloys was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). XRD analysis showed that mieroalloying with 0.05% Ti and 0.05% B improved the glass forming ability (GFA). The smaller difference in the Gibbs free energy between the liquid and crystalline states at the glass transition temperature (△G1-X(Tg)) and the smaller thermodynamic fragility index (△Sf/Tm, where ASf is the entropy of fusion, and Tm is the melting temperature) after mieroalloying correlated with the higher GFA.  相似文献   

2.
A series of dysprosium-based ternary, quadruple, and quintuple bulk metallic glasses (BMGs) based on Dy-Al binary eutectic composition were obtained with the partial substitution of Co, Gd, and Ni elements, for dysprosium. The results showed that the Dy31Gd25Co20Al24 alloy, which had the best glass forming ability (GFA), could be cast into an amorphous rod with a diameter of 5 ram. The GFA of alloys was evaluated on the basis of the supercooled liquid region width, 7 parameter, the formation enthalpy, and the equivalent electronegativity difference of amorphous alloys. It was found that the eutectic composition was closely correlated with the GFA of the Dy-based BMGs.  相似文献   

3.
Mg65Cu25Gd10 bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization processes. The influence of CNTs addition to the glass matrix on the glass transition and crystallization kinetics was studied. It is shown that the kinetic effect on glass transition and crystallization are preserved for both the monothetic glass and its glass composite. Adding CNTs in to the glass matrix reduces the influence of the heating rate on the crystallization process. In addition, the CNTs increase the energetic barrier for the glass transition. This results in the decrease of GFA. The mechanism of the GFA decrease was also discussed.  相似文献   

4.
A method based on the semi-empirical Miedema model and a geometrical model was used to study the glass forming abilities(GFA) and the amorphous forming ranges of Al-Fe-Nd-Zr system and its constituent ternary systems.The amorphous forming composition ranges were analyzed based on different criteria such as ΔGam-ss and PHSS(PHSS=ΔHchem(ΔSC/R)(ΔSσ/R)) for Al-Fe-Nd system.The predicted amorphous forming range was in good agreement with the experimental results.The results showed that the criterion of ΔGam-ss was more accurate,and agreed well with the experiment results.The Gibbs free energy difference ΔGam-ss and parameter PHSS were then used to predict the amorphous forming composition range for the rest of the constitutive ternary systems of Al-Fe-Nd-Zr.In addition,the amorphous forming composition ranges of the(Al-Fe-Zr)100–x Ndx(x=50,60,70) systems were predicted by ΔGam-ss and the modified parameter PHSS.The Gibbs free energy of Al10(Fe1–x Zrx)30Nd60 were also calculated.The GFA parameter PHSS indicated that the composition with the highest GFA was Al33.5Fe13.5Zr3Nd50 for the(Al-Fe-Zr)50Nd50 system,Al28.8Fe10Zr1.2Nd60for the(Al-Fe-Zr)40Nd60 system and Al22.8Fe6.9Zr0.3Nd70 for the(Al-Fe-Zr)30Nd70 system,and the results suggested that those alloys with high content of Al had higher GFA.The appropriate content of neodymium and zirconium resulted in the lower value of PHSS and increased the GFA obviously.  相似文献   

5.
Melt spinning technology was used to prepare the Mg2 Ni-type(Mg24 Ni10 Cu2)100–x Ndx(x=0,5,10,15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of Nd content and spinning rate on the structures and electrochemical hydrogen storage performances of the alloys were investigated.The structure characterizations of X-ray diffraction(XRD),transmission electron microscopy(TEM) and scanning electron microscopy(SEM) linked with energy dispersive spectroscopy(EDS) revealed that the as-spun Nd-free alloy displayed an entire nanocrystalline structure,whereas the as-spun Nd-added alloys held a nanocrystalline and amorphous structure and the degree of amorphization visibly increased with the rising of Nd content and spinning rate,suggesting that the addition of Nd facilitated the glass forming of the Mg2 Ni-type alloy.The electrochemical measurements indicated that the addition of Nd and melt spinning improved the electrochemical hydrogen storage performances of the alloys significantly.The discharge capacities of the as-cast and spun alloys exhibited maximum values when Nd content was x=10,which were 86.4,200.5,266.3,402.5 and 452.8 mAh/g corresponding to the spinning rate of 0(As-cast was defined as the spinning rate of 0 m/s),10,20,30 and 40 m/s,respectively.The cycle stability(S20,the capacity maintain rate at 20thcycle) of the as-cast alloy always rose with the increasing of Nd content,and those of the as-spun alloys exhibited the maximum values for Nd content x=10,which were 77.9%,83.4% 89.2% and 89.7%,corresponding to the spinning rate of 10,20,30 and 40 m/s,respectively.  相似文献   

6.
The phase structure and electrochemical characteristics of Ml ((Ni3.55Co0.75Mn0.40Al0.30)sx ( x = 0.88, 0.92, 0.96, 1.00) hydrogen storage alloys were studied. The effect of the stoichiometric ratio on the phase structure and electrochemical characteristics was analyzed. The results of XRD reveal that all the alloys consist mainly of LaNi5 phase with the hexagonal CaCu5 structure. But a few of the diffraction peaks of La2Ni7 phase on XRD pattern are observed when x ≤ 0.92, and with decreasing x, the intensity of La2Ni7 diffraction peaks increases and the values of lattice parameters a and cell volume increase, c and c/a of LaNi5 phase decrease gradually. When x≥0.96, La2Ni7 phase disappears and the alloys become single CaCu5-type. The electrochemical tests show that the maximum discharge capacity, high rate dischargeability and low temperature dischargeability are improved to different degrees by adjusting the stoichiometric ratio.  相似文献   

7.
Crystalline behavior and magnetic properties of Nd60Fe30-xAl10Cox( x = 0, 5, 10) bulk amorphous alloys were investigated by differential scanning calorimeter (DSC), X-ray diffraction (XRD) and the vibrating sample magnetometer (VSM). Neither glass transition nor supercooled liquid region before crystallization was observed for the as-cast Nd60Fe30-xAl10Cox ( x = 0,5,10) bulk amorphous alloys. The glass forming ability can be improved significantly by the addition of Co. The as-cast Nd60Fe30-xAl10Cox (x = 0,5,10) alloys show hard magnetic behavior. With the addition of Co content, intrinsic coercivity (iHc) increases while the saturation magnetization(σs) and remanence (σr) decrease. The Curie temperature for the as-cast Nd60Fe30-xAl10Cox alloys increases from 451 K for x =0 to 468 K for x = 10. Some pre-cipitation of crystalline phases does not affect the hard magnetic properties of Nd60Fe30-xAl10Cox(x = 0,5,10) alloys, while the hard magnetic behavior disappears quickly after the alloys being completely crystallized.  相似文献   

8.
The (60 - x)Bi2O3 - xGeO2-30B2O3-10ZnO (x = 5, 10, 20, 30 molar percent) glasses doped with Er^3+ and Er^3+/Yb^3+ were fabricated using the melting method. The thermal stability of the glasses was studied with their DTA curves. The results show that the difference between the glass transition temperature and the crystallization onset temperature increases with the increase of GeO2 content, indicating that the thermal stability of the glass has become better. The absorption spectra were recorded and the stimulated emission cross sections were calculated using the McCumber theory. The Ω2, O4, and Ω6 parameters,the transition probability, the radiative lifetime, and the fluorescence branch ratio of Er^3+ for optical transition were calculated from their absorption spectra in terms of reduced matrix U^(t)(λ = 2, 4, 6) character for optical transitions. The infrared emission of Er^3+ was measured upon excitation with 970 nm light and the full width at half-maximum (FWHM) was estimated from the emission spectra. The pumping efficiency and the intensity of the emission at the 1.54 μm band of Er^3+ were enhanced considerably by co-doping Yb^3+ .  相似文献   

9.
The structure and disorder-order transformation of NdxFe60.5-x Pt39.5(x = 0, 0.5, 1.0, 1.5) alloys were investigated in situ by high temperature X-ray diffraction. The results show that the lattice parameter a of disordered γ phase (FCC, Al structure type) and the lattice parameter ratio c/a of ordered γ1 phase (FCT, L10 structure type) increase linearly with increasing Nd concentration, whereas the c/a ratio decreases with increasing temperature. The transition temperature from ordered FCT to disordered FCC decreases with increasing Nd concentration, but for alloys quenched rapidly from γ phase region into ice-water it increases with increasing Nd.  相似文献   

10.
Single-phase La_(2–x)Nd_xMo_2O_9(0≤x≤1.8) compounds were prepared using solid-state reaction technique. Their structural and thermal p roperties were characterized by room and high temperatures X-ray diffraction(XRD), thermo gravimetric analysis-differential scanningcalorimetry(TG-DSC), and high temperature Raman spectra. The transport properties were investigated using D.C. four-probe technique and Hebb-Wagner polarization method. The substitution limit of Nb~(3+) in La_(2–x)Nd_xMo_2O_9 was determined to be in the range of 1.8x1.9, and the cubic lattice parameter of La_(2–x)Nd_xMo_2O_9 decreased linearly with the increasing of x. When the Nb~(3+) substitution content x was larger than 0.6, the α/β phase transition could be depressed to such a great degree that the phase transition thermal enthalpy was not detected by DSC. The temperature dependence of electrical conductivities for La_(1.4)Nd_xMo_2O_9 below 873 K and that for LaNdMo_2O_9 below 923 K obeyed the Arrhenius law, while above 873 and 923 K Vogel-Tammann-Fulcher(VTF) model could describe the conduction behaviors satisfactorily. The transition of transport mechanism from Arrhenius to VTF was caused by the change of structure, which was supported by the high temperature XRD and Raman results. The ionic transport number of La_(1.4)Nd_xMo_2O_9 in air was larger than 0.99 at 1073 K, and with the increasing of temperature it was close to 0.98 at 1173 K. In view of the phase transition, thermal expansion and conductivity properties, La_(1.4)Nd_xMo_2O_9 should be a promising electrolyte material in La_(2–x)Nd_xMo_2O_9 series.  相似文献   

11.
The structure, hydrogen storage property, and electrochemical characteristics of the La0.7Mg0.3Ni5.5−x (Al0.5Mo0.5) x (x=0, 0.2, 0.4, 0.6, 0.8) hydrogen storage alloys have been investigated systematically. It has been found by X-ray powder diffraction and Rietveld analysis that the alloys are multiphase and consist of impurity Ni phase and two main crystallographic phases, namely, the La(La, Mg)2Ni9 phase and the LaNi5 phase, and the lattice parameters and the cell volumes of both the La(La, Mg)2Ni9 phase and the LaNi5 phase increase with increasing Al and Mo content in the alloys. The P-C isotherm curves indicated that the hydrogen storage capacity of the alloy first increases and then decreases with increasing x, and the equilibrium pressure decreases with increasing x. The electrochemical measurements show that the maximum discharge capacity first increases from 298.5 (x=0) to 328.3 mAh/g (x=0.6) and then decreases to 304.7 mAh/g (x=0.8). The high rate dischargeability (HRD) of the alloy electrodes increases lineally from 65.4 pct (x=0) to 86.6 pct (x=0.8) at the discharge current density of 1200 mA/g. Moreover, the exchange current density of the alloy electrodes also increases monotonously with increasing x by the linear polarization curves. The hydrogen diffusion coefficient in the alloy bulk, D, increases with increasing Al and Mo content and thus enhances the low-temperature dischargeability (LTD) of the alloy electrodes.  相似文献   

12.
利用射流成型法制备出Zr52.5Cu17.9Ni14.6Al10Ti5大块非晶.该合金系统具有很强的玻璃形成能力和宽的过冷区,其玻璃转化温度Tg=650.63K,晶化温度Tx=721.90K,过冷区△Tx=Tx-Tg=71.27K.Vicker硬度为558kg/mm2压缩断裂强度1730GPa,弹性模量82GPa.观察其断口有大量纹络状河流花样,并有融化的液滴存在.该合金系统大的玻璃形成能力应归功于合金组元的多样性、组元间大的原子半径比率、组元间大的混合负热及在冷却过程中过冷区粘度的急剧上升等因素.  相似文献   

13.
Addition of a small amount of Nb to the (Fe,Co)-Gd-B glassy alloy in (Fe0.9Co0.1)71.5−x Nb x Gd3.5B25 increased the stabilization of supercooled liquid. The largest supercooled liquid region of 104 K was obtained for the x = 2 alloy. A distinct two-stage-like glass transition was observed with further incresing Nb content. The nanoscale (Fe,Co)23B6 phase precipitated in the glassy matrix after annealing, while the two-stage-like glass transition disappeared, indicating that the anomalous glass transition behavior originates from the exothermic reaction for the formation of the (Fe,Co)23B6 phase in the supercooled liquid region. The glass-forming ability (GFA) also increased by addition of Nb, leading to formation of the bulk glass form for the Nb-doped alloys. The best GFA with a diameter of over 3 mm was achieved for the x = 4 alloy. The (Fe,Co)-Gd-Nb-B glassy alloys exhibited good magnetic properties, i.e., rather high saturation magnetization of 0.81 to 1.22 T, low coercive force of 2.5 to 5.8 A/m, and low saturated magnetostriction of 9 to 19 × 10−6. In addition, the glassy alloys also possessed very high compressive fracture strength of 3842 to 3916 MPa and high Vickers hardness of 1025 to 1076.  相似文献   

14.
The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5-xZr0.5-xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzene. The prepared catalysts were characterized by X-ray diffraction (XRD), surface area analysis, oxygen storage capacity (OSC), and H2-temperature programmed reduction (H2-TPR). Catalytic test was performed on a conventional fixed bed flow reactor. The characterization results revealed that Y and Mn ions entered into the ceria-zirconia mixed oxides framework, which improved the textural properties and greatly promoted the MnOx dispersion on the support surface. The complete conversion temperature of benzene on MnOx/Ce0.4Zr0.4Y0.1Mn0.1Oy/Al2O3 was 563 K, and the selectivity of carbon dioxides was 99%. This catalyst could be applied in a wide range of GHSV and wide concentration condition, showing great potential for application.  相似文献   

15.
In order to reduce the cost of LaNi5 based hydrogen storage alloys, effect of substitution of Mn for Ni on structural and electro-chemical properties of LaNi4-xFeMnx(x=0-0.8) hydrogen storage alloys was studied systematically. X-ray diffraction (XRD) and scanning electron microscope (SEM) showed that LaNi5 and La2Ni7 phases were invariably present in all alloy samples, and when x≥0.4, (Fe,Ni) phase was observed. Electrochemical studies revealed that the discharge capacity reached a maximum value of 306.4 mAh/g when x=0.2 and the cycling stability decreased with the increase of x.With the increase of Mn content, hydrogen diffusion coefficient decreased, whereas high rate discharge-ability (HRD) and exchange current density first increased slowly when x≤0.2 and then decreased markedly when x=0.8,indicating that electrochemical reaction on the surface of alloy electrodes had strong influence on kinetic property.  相似文献   

16.
M-T curves, p-T curves, and MR-T curves of La0.67-xErxSr0.33MnO3 (x=0.00, 0.10, 0.20) system were studied by experiments. The experiments showed that: with increasing the doping amount, the magnetic structure of the system transformed from long-range ferromag-netic ordering to spin-cluster glass state, and M-T curves bent up in the extremely low temperature range; the resistivity of the system in-creased with increasing doping amount and exhibited the minimum phenomenon of low-temperature resistivity. The variation of the mag-netic and electric properties came from the extra magnetic coupling induced by the doping and from the Kondo effect induced by the lattice distortion and local magnetic moments which was similar to that induced by the mattering of magnetic impurities on electron spins.  相似文献   

17.
The microstructure, hydriding performance, and electrochemical properties of LaNi4.0Ai0.2Fe0.4Cu0.4-x Snx(x = 0- 0.4) hydrogen storage alloys prepared by casting were investigated using XRD, SEM, pressure-composition isotherms, and electrochemical measurements. Substitution of Sn for Cu leads to the precipitation of LaNiSn phase. With increasing amount of tin substitution, cell volume, plateau pressures, and discharge capacities of the alloys decrease, whereas the cycle life of the alloys improves.  相似文献   

18.
Absorption spectra of the mixed chain nickelates (NdxY1−x)2BaNiO5 were measured for different x. Experimentally two evidences for the presence of non-equivalent rare-earth centers (NEREC) were found. First, the linewidths show a very strong broadening for x when the calculated distribution over NEREC is wide. Second, a complicated lineshape of the lowest-frequency line in the region of the 4I9/24I11/2 electronic transition is in good agreement with statistics of NEREC. A simple modeling for the line broadening due to NEREC is suggested.  相似文献   

19.
Samples with nominal composition of (1 - x)La0.67Ca0.33MnO3 (LCMO)/xCuO (x = 0%, 2%, 4% and 20% ) were made using a special experimental method. The temperature dependence of the resistivity (ρ) of the composites was investigated in the temperature range of 10 - 300 K and different magnetic fields of H = 0, 0.1, 0.3, 0.5, 1.0 and 3.0 T. The results showed that CuO percentage x had important effects on metal-insulator transition temperature (Tp), zero field peak resistivity (ρmax), and magnetoresistance (MR) properties of the composites. Tp shifted sharply towards low temperature with the increase of x in the range of x ≤4%, but was almost independent of x at high level of CuO content. Composites with x = 4 % and 20 % exhibited similar electrical transmission behavior. Compared with pure LCMO, enhanced magnetoresistance could be clearly observed even in a quite low magnetic field of 0.3 T. For x =4% and 20% samples, the MR value at 0.3 T could reach as high as - 88% and - 90%, respectively. XRD and SEM analysis showed that the substantial enhancement of MR, especially near Tp, was because of local spin disorder between contiguous LCMO ferromagnetic particles caused by the addition of CuO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号