首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel organic electroluminescent device was made with the structure of ITO/PVK:Tb0.5Eu0.5(TTA)3 Dipy/ BCP/Alq3/Al(a) which utilized the rare earth complex Tb0.5Eu0.5(TTA)3 Dipy as the emitting layer. When it was driven under a direct electric field, 612 nm emission from EU^3+ and 410 nm emission from PVK were observed. In addition, in the EL spectrum a new peak at 490 nm appeared. From the analysis of different devices, the mechanism of the new emission was studied. It was concluded that the new emission was the electroplex originating from the interface between the ligand (TTA)3Dipy and BCP.  相似文献   

2.
A novel rare earth complex Eu(TTA)2(N-HPA)Phen (TTA = thenoyltrifluoroacetone, N-HPA = N-phenylanthranilic acid, and phen = 1,10-phenathroline ), which contains three different ligands, was synthesized. The Eu complex was blended with poly N-vinylcarbazole (PVK) in different weight ratios and spin coated into films. The luminescence properties of films were investigated and energy transfer between PVK and the complex was discussed. Multilayer structural devices consisting of ITO/PVK: Eu (TTA)2 (N-HPA) phen/BCP/Alq3/Al were fabricated with PVK : Eu (TTA)2(N-HPA) as light-emitting layer. Increasing the concentration of Eu in the PVK thin film would inhibit the emission of PVK to different degrees. Finally, the pure red luminescence of europium( Ⅲ ) was observed when the doping weight ratio was approximately 1 : 5, which indicated an effective energy transfer from PVK to rare earth complex.  相似文献   

3.
A novel rare earth complex Eu0.5La0.5(TTA)3phen, displaying electroluminescent property, was synthesized, and monolayer and double-layer devices were fabricated by doping it into poly N-vinylcarbazole. The characteristics of these optimized devices were investigated, and the emitting mechanism was explained through the energy band diagram. Optimized double-layer devices with a turn-on voltage of 6.5 V were achieved. At the current density of 68.48 mA·cm−2, the maximum brightness and the current efficiency of the device reached 238.4 cd·m−2 and 0.35 cd·A−1, respectively.  相似文献   

4.
A series of Gd5Si2BO13:Eu3+ and non-rare earth Bi3+ ions doped Gd5Si2BO13:Eu3+ phosphors was successfully synthesized via high-temperature solid-state method,and the as-obtained phosphors were studied on their phase structures,luminescence characteristics,thermal stability and luminescence lifetime.Transient fluorescence spectroscopy data show that the addition of Bi3+ can obviously enha...  相似文献   

5.
Gd2O3:Eu3+@CsPbBr3 quantum dots (QDs) mesoporous hollow nanocomposites with good luminescent properties and high stability were built. Among which, the hollow Gd2O3:Eu3+ spheres and CsPbBr3 QDs were prepared by urea homogeneous precipitation and hot-injection method, respectively. Finally, the Gd2O3:Eu3+@CsPbBr3 QDs shell–core compounds were constructed through mechanical stirring. The structure, morphology, stability and luminescent properties were studied by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry/thermogravity (DSC/TG), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence excitation/photoluminescence (PLE/PL) and life decay tools. Compared to the original CsPbBr3 QDs, Gd2O3:Eu3+@CsPbBr3 QDs display better photostability, thermal stability and current stability. The resulting Gd2O3:Eu3+@CsPbBr3 QDs composite exhibits good yellow emission. The Gd2O3:Eu3+@CsPbBr3 QDs mixed silicone resin was directly coated on the blue LED chip, then the w-LED device with the color coordinate of (0.31, 0.32) was successfully assembled. The Gd2O3:Eu3+@CsPbBr3 QDs compounds with excellent luminescent properties and stability are expected to be widely used in lighting and display areas.  相似文献   

6.
The(Gd_(0.97-x)Eu_xTb_(0.03))AIO_3(x= 0.005-0.07) phosphors were synthesized by the co-precipitation method,using ammonium bicarbonate as a precipitant.The combined technologies of FT-IR,XRD,FESEM,PLE/PL and photo luminescence decay analysis were used to study the phase evolution,morphologies and luminescent properties.The phosphors with good dispersion exhibit strong vivid red emission located at 617 nm(~5 D_0-~7 F_2 transition of Eu~(3+)) under the optimal excitation wavelength of 275 nm(~4 f~8-4 f~75 d~1 transition of Tb~(3+),~8 S_(7/2)→6~I_J transition of Gd~(3+)).The presence of Gd~(3+) and Tb~(3+) excitation bands on the PLE spectra monitoring the Eu~(3+) emission directly gives an evidence of Tb~(3+) → Eu~(3+) and Gd~(3+) → Eu~(~(3+)) energy transfer,The emission intensity varies with the Eu~(3+) amount,and the quenching concentration is ~5 at% which is close to the calculated value.The quenching mechanism is determined to be the exchange reaction between Eu~(3+).The temperature-dependent PL analysis indicates that the best(Gd_(0.92)Eu_(0.05)Tb_(0.03))AlO_3 sample possesses good thermally stable properties.All the(Gd_(0.97-x)Eu_xTb_(0.03))AIO_3 phosphors in this work have similar CIE chromaticity coordinates and color temperatures,which are(0.65 ± 0.02,0.35 ± 0.02) and ~2558 K,respectively.Fluorescence decay analysis shows that the lifetime for~617 nm emission decreases with the content of Eu~(3+) and temperature increasing.Owing to the Tb~(3+)→ Eu~(3+) energy transfer,the luminescent properties of the(Gd_(0.92)Eu_(0.05)Tb_(0.03))AlO_3 phosphors are superior to the single Eu~(~(3+)) doped sample(Gd_(0.95)Eu_(0.05))AlO_3.As a result,the prepared phosphors may be widely used in solid-state display and light emitting devices.  相似文献   

7.
The Gd2O2CO3:Eu^3+ with type-Ⅱ structure phosphor was successfully synthesized via flux method at 400 ℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO3^2- host absorption and charge transfer (CT) of Gd^3+-O2^- were observed for Gd2O2CO3:Eu^3+. Under 172 nm excitation, Gd2O2CO3:Eu^3+ exhibited strong red emission with good color purity, indicating Eu^3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu^3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu^3+ excited by 172 nm for Gd2O2CO3:Eu^3+ was about 5%. Gd2O2CO3:Eu^3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.  相似文献   

8.
In this paper, the Gd2O3:Eu3+,Tb3+phosphors with different doping concentrations of Eu3+and Tb3+ions were prepared by a hydrothermal method for nanocrystals and the solid-phase method for microcrystals. The interaction of the doped ions with different concentrations and the luminescent properties of the nanocrystals and microcrystals were studied systematically. Their structure and morphology of Gd2O3:Eu3+,Tb3+phosphors were analyzed by means of X-ray powder diffraction (XRD), transmission electron mi-croscopy (TEM) and scanning electron microscopy (SEM). The photoluminescence (PL) properties of Gd2O3:Eu3+,Tb3+phosphors were also systematically investigated. The results indicated that when the concentration of doped Eu3+was fixed at 1 mol.%, the emis-sion intensity of Eu3+ions was degenerating with Tb3+content increasing, while when the Tb3+content was fixed at 1 mol.%, the emission intensity of Tb3+ions reached a maximum when the concentration of Eu3+was 2 mol.%, implying that the energy transfer from Eu3+to Tb3+took place. In addition, Tb3+could inspire blue-green light and the Eu3+could inspire red light. Therefore co-doping systems by controlling the doping concentration and the hosts are the potential white emission materials.  相似文献   

9.
A novel rare earth complex Tb (3-metho)3phen was synthesized and characterized. The complex was doped into PVK to improve the conductivity and film-forming property of Tb(3-metho) 3phen. A device with a structure of ITO/PVK: Tb(3-metho)3phen/Al was fabricated to study the eleetrolumineseent properties of Tb(3-metho) 3 phen. And the optoluminescent and AFM properties of this device were also studied, which proved the existence of energy transfer from PVK to Tb(3-metho)3phen. As a result, a pure green emission with sharp spectral band at 547.5 nm was observed.  相似文献   

10.
The BaGd_(2-2 x)Eu_(2 x)O_4(BG, x = 0.01-0.09) phosphors were successfully synthesized via the sol-gel method,and BaY_(2-2 y)Eu_(2 y)O_4(BY, y = 0.005-0.07) phosphors were included for comparison. The pure phase BG phosphors with the ordered CaFe_2 O_4-type structure are obtained by annealing at 1300℃ for5 h. The phosphors with uniform particle size of 120 nm and good dispersion display typical Eu~(3+)emission with the strongest peak at 613 nm(~5 D_0→~7 F_2 transition of Eu3+) under optimal excitation band at 262 nm(CTB band). The presence of Gd~(3+) excitation bands on the PLE spectra monitoring the Eu3+emission directly proves an evidence of Gd~(3+)-Eu~(3+) energy transfer. Owing to the concentration quenching, the optimum content of Eu3+ addition is 5 at%(x = 0.05), and the quenching mechanism is determined to be the exchange reaction between Eu3+. All the BG samples have similar color coordinates and temperature of(0.64 ± 0.02, 0.36 ± 0.01) and 2000 ± 100 K,respectively. The lifetime value of BaGd_(1.9)Eu_(0.1)O_4 for 613 nm is fitted to be 2.19 ± 0.01 ms, and the Eu~(3+) concentration does not change the lifetime significantly. Owing to the Gd~(3+)-Eu~(3+) energy transfer, the luminescent intensity of the BaGd_(1.9)Eu_(0.1)O_4 phosphor is better than BY system. The BG system served as a new type of phosphor is expected to be widely used in lighting and display areas.  相似文献   

11.
The bidentate phosphine oxide ligand 1,8-bis(diphenylphosphino) naphthalene oxide (NAPO) and its EuIII complex 1 Eu(TTA)3(NAPO) (TTA=2-thenoyltrifluoroacetonate) were chosen to study the effect of bidentate phosphine oxide ligand on the photophysical properties of the corresponding complex. The intramolecular energy transfer processes of 1 were studied. The investigation showed that with bidentate structure NAPO could suppress solvent-induced quenching by enforcing the ligand-ligand interaction and the rigidity of the complex. Contrasted with the monodentate triphenylphosphine oxide (TPPO), NAPO had a higher first triplet excited energy level (T1) and a lower first singlet excited energy level (S1), which fitted to the corresponding excited energy levels of anion ligand TTA much more and supported more efficient singlet and triplet energy transfer in its EuIII complex.  相似文献   

12.
Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors with different concentrations were prepared via a co-precipitation method. The structure and morphology of the nanocrystal samples were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The emission spectra and excitation spectra of samples were measured. J-O parameters and quantum efficiencies of Eu3+ 5D0 energy level were calculated, and the concentration quenching of Eu3+ luminescence in different matrixes were studied. The results indicated that effective Eu3+:5D0-7F2 red luminescence could be achieved while excited by 395 nm near-UV light and 465 nm blue light in Gd2WO6 host, which was similar to the familiar Gd2(WO4)3:Eu. Therefore, the Gd2WO6:Eu red phosphors might have a potential application for white LED.  相似文献   

13.
LaF3:Eu3+ and GdF3:Eu3+ nanoparticles were prepared by a co-precipitation method in the presence of the chelating agent, citric acid. The structural properties of the products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The average crystallite size was estimated from the full-width at half-maximum (FWHM) of the diffraction peaks by the Scherrer equation. The sizes of the nanoparticles were 12 nm for LaF3:Eu3+ and 17 nm for GdF3:Eu3+. The luminescent properties of the nanoparticles were investigated by excitation and emission spectra. Energy transfer from Gd3+ to Eu3+ was observed.  相似文献   

14.
Single phase of BaGd0.9-xMxEu0.1B9O16 (M=Al or Sc, 0≤x≤0.3) powder was prepared by the solid-state reaction and its photoluminescence (PL) properties were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation. Monitored with 613 nm emission, the excitation spectra of BaGd0.9-xMxEu0.1B9O16 consisted of three broad bands peaking at about 242, 208, and 142 nm, respectively. The one at about 242 nm originated from the charge transfer band (CTB) of O2-→Eu3+. The other two were assigned to the absorption of the host, which was overlapped with absorptions among borate groups, f→d transition of RE3+ (RE=Gd, Eu), and the charge transfer transition of O2-→Gd3+. The maximum emission peak was observed at about 613 nm in the emission spectra of BaGd0.9-xMxEu0.1B9O16 under both 254 and 147 nm excitation, which originated from the electric dipole 5D0→7F2 transition of Eu3+. When excited with 254 nm, the integral emission intensity of Eu3+ increased after Al3+ or Sc3+ substituting Gd3+ partly in BaGd0.9Eu0.1B9O16. Under 147 nm excitation, the integral emission intensity of Eu3+ decreased after some Gd3+ was replaced by Sc3+, but increased after adding appropriate Al3+ into BaGd0.9Eu0.1B9O16.  相似文献   

15.
We reported magnetooptical properties of Eu3+(4f(6)) and Tb3+(4f(8)) in single crystals of Gd3Ga5O12 (GGG), Y3Ga5O12 (YGG), and Eu3+(4f(6)) in Eu3Ga5O12 (EuGG) for both ions occupying sites of D2 symmetry in the garnet structure. Absorption, luminescence, and magnetic circular polarization of luminescence (MCPL) spectra of Tb3+ in GGG and YGG and absorption and magnetic circular dichroism (MCD) of Eu3+ in EuGG were studied. The data were obtained at 85 K and room temperature (RT). Magnetic susceptibility of Eu3+ in EuGG was also measured between 85 K and RT. The magnetooptical and magnetic susceptibility data were modeled using the wavefunctions of the crystal-field split energy (Stark) levels of Eu3+ and Tb3+ occupying D2 sites in the same garnets. The results reported gave a precise determination of these Stark level assignments and confirmed the symmetry labels (irreducible representations) of the closely-spaced Stark levels (quasi-doublets) found in the 5D1 (Eu3+) and 5D4 (Tb3+) multiplets. Ultraviolet (UV) excitation (<300 nm) of the 6PJ and 6IJ states of Gd3+ in the doped GGG crystals led to emission from 5D4 (Tb3+) and 5D1 and 5D0 (Eu3+) through radiationless energy transfer to the 4f(n-1)5d band of Tb3+ and to UV quintet states of Eu3+. The temperature-dependent emission line shapes and line shifts of the magnetooptical transitions excited by UV radiation suggested a novel way to explore energy transfer mechanisms in this rare-earth doped garnet system.  相似文献   

16.
A simple co-precipitation approach taking place between Ln3+, Sr2+ cations and F– anions, led to the formation of nanocrystalline Eu3+ doped Sr2LnF7(Ln=La and Gd) complex fluorides. The reaction was carried out in the presence of polyethylene glycol, PEG 6000 as a surfactant/surface modifier, providing small size and homogeneity of the products. The synthesized compounds were composed of small nanoparticles with an average size of 15 nm. All obtained Eu3+ doped compounds exhibited an intensive red luminescence. In the case of gadolinium based compounds, the energy transfer phenomena could be observed from Gd3+ ions to Eu3+ ions. In order to study the structure and morphology of the synthesized fluorides, powder X-ray diffraction(XRD) and transmission electron microscopy(TEM) measurements were performed. Also FT-IR spectra of the products were recorded, revealing the presence of PEG molecules on the nanoparticles surface. A spectrofluorometry technique was applied to examine optical properties of the synthesized nanoparticles. Excitation and emission spectra as well as luminescence decay curves were measured and analysed. The performed analysis revealed a red luminescence, typical for the Eu3+ ion situated in the inorganic, highly symmetric matrix. Concentration quenching phenomena and lifetimes shortening, together with an increasing of the Eu3+ doping level, were observed and discussed. Judd-Ofelt analysis was also performed for all doped samples, in order to support the registered spectroscopic data and examine in details structural and optoelectronic properties of the synthesized nanomaterials.  相似文献   

17.
A new ligand, N,N-BIS (6-metyl-2-pyridinecarboxylamide-N-oxide)-1,2-ethane (L) and six lanthanide(III) complexes (RE=La, Sm, Eu, Tb, Gd, Yb) were synthesized and characterized in detail. The results indicated that the composition of the binary complexes was determined as [REL(H2O)(NO3)2]NO3·nH2O (n=0–2), and the Eu3+ complex had bright red fluorescence in solid state. Three complexes of Eu3+, Tb3+, and Gd3+ with 6-methylpicolinic acid N-oxide (L') were also synthesized. The relative intensity of sensitized luminescence for Eu3+ increased in the following order: L>L'. The phosphorescence spectra of the Gd3+ complexes at 77 K were measured. The energies of excited triplet state for the ligands were 20704 cm−1 (L) and 20408 cm−1 (L'). The facts that the ligands sensitized Eu3+ strongly and the order of the emission intensity for Eu3+ complexes were explained by ΔE(T-5D). This meant that the triplet energy level of the ligand was the main factor to influence RE3+ luminescence.  相似文献   

18.
A series of blue long afterglow mixed halide-phosphate phosphors Sr5 (PO4)3 FxCll-x:Eu2+,Gd3+ were synthesized in air by traditional solid-state reaction routte. The crystal structures, photoluminescence, thermolurninescenee properties and afterglow proper- ties of the phosphors were characterized systematically using X-ray diffraction (XRD), luminescence spectrophotometer, microcom- puter thermoluminescence dosimeter and single photon counter, respectively. Under 280 nm excitation, the broadband emissions of Eu2+ ions were observed at 445 nm (blue) due to the 4f7→4f65d transition. It was demonstrated that there existed the self-reduction of the Eu3+ to Eu2+ ions in this special halide-phosphate matrix in air condition. The addition of Gd3+ ions obviously enhanced the after- glow properties of the single doped Eu2+ ions in the halide-phosphate phosphors. And the content of the fluoride anions also had sig- nificant influence on the afterglow properties. All results indicated that Srs (PO4)3 FxCI1-x:Eu2+,Gd3+ might be potential phosphors for long lasting phosphorescence (LLP) materials.  相似文献   

19.
In this work, the Gd3+/Eu3+ activated Ba3Y4O9 (BYO) phosphors were successfully synthesized via coprecipitation method at 1400 °C. The precursor composition, crystal structure stability, microscopic morphology, photoluminescence (PL)/photoluminescence excitation (PLE) spectra and fluorescence attenuation analysis of the phosphors are discussed in detail. The chemical composition of the precursor was determined by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry (TG) analysis; According to field emission-scanning electron microscopy (FE-SEM) analysis, it is found that the particle size of phosphor is uniform and the agglomeration is few. According to PL/PLE spectra analysis, Ba3Y3.28Eu0.6Gd0.12O9 phosphors has the strongest excitation band at 260 nm and the strongest emission band at 614 nm, and the fluorescence intensity of Ba3Y3.28Eu0.6Gd0.12O9 is higher than that of Ba3Y3.4Eu0.6O9. The quenching concentration of Eu3+ in Ba3Y3.88–4xEu4xGd0.12O9 phosphors is x = 0.15 and the mechanism of quenching concentration of Eu3+ is electric dipole-quadrupole type interactions. The lifetime value of Ba3Y3.88–4xEu4xGd0.12O9 (x = 0.15) phosphors is 0.686 ms and decreases with the increase of Eu3+ content. In addition, the CIE chromaticity diagram of Ba3Y3.28Eu0.6Gd0.12O9 phosphors is (0.66, 0.34). Finally, the lamp beads assembled with Ba3Y3.28Eu0.6Gd0.12O9 phosphors have an ideal luminous effect. Therefore, the Ba3Y3.88–4xEu4xGd0.12O9 phosphors designed in this work may hopefully meet the requirements of various lighting and optical display applications.  相似文献   

20.
Gd2InSbO7:Eu3+ red phosphors were successfully synthesized via high-temperature solid–state reaction. The phase purity, particle size, and luminescence properties of obtained phosphors were measured and analyzed in detail. The Gd2InSbO7 lattice possesses cubic structure with Fd-3m (227) space group. The phosphors emit bright red emission at 628 nm under 393 nm excitation, and this phenomenon is attributed to the 5D07F2 transition. The Judd–Ofelt parameters (Ω2, Ω4), transition ratio, and branching ratios (β) of Eu3+-doped Gd2InSbO7 phosphor were calculated on the basis of the emission spectra and decay lifetimes. The optimal content in Gd2InSbO7:xEu3+ is identified to be 15 mol%. The thermal quenching of Gd2InSbO7:Eu3+ is found to be over 500 K, and its activation energy is 0.26 eV. The Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of Gd2InSbO7:15%Eu3+ are (0.629, 0.371), which are close to ideal red chromaticity coordinates (0.670, 0.330). The fabricated w-LED exhibits good color rendering index (Ra) (86), correlated color temperature (CCT) (6997 K), and CIE chromaticity coordinates (0.302, 0.330). The obtained results demonstrate that Gd2InSbO7:Eu3+ phosphors have potential applications in white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号