共查询到16条相似文献,搜索用时 83 毫秒
1.
为了更好地利用分布式电源(DG),需要调整配电网开关状态优化网络结构。基于此,旨在利用一种智能算法对含DG的配电网进行优化重构。以网损最小为目标函数,建立配电网重构模型,并给出重构需要满足的约束条件;按照DG接入配电网的接口类型将其分为PQ型、PV型、PI型和PQ(V)型四种类型,选择前推回代法对含DG的配电网进行潮流计算;通过分析二进制粒子群算法(BPSO)与量子粒子群算法(QPSO),提出了一种改进的量子粒子群算法—加权的二进制量子粒子群算法(WBQPSO)。以IEEE33节点配电系统为例,采用二进制编码方式,通过仿真结果可以发现WBQPSO通过对粒子的平均最好位置加权处理,改善种群多样性,提高收敛速度,可以得到更好的网络重构的优化结果。 相似文献
2.
配电网重构是一个复杂的非线性组合优化问题。为了克服基本优化算法易陷入局部最优解的问题,提出了一种改进的二进制量子粒子群算法(BQPSO),对含分布式电源(DG)的配电网重构模型进行求解。通过引入遗传算法的交叉操作和变异操作来避免早熟来提高算法的全局搜索能力,改进了算法的性能。并且选择了适当的不可行解处理方式来提高了算法的计算效率。最后通过对IEEE33节点配电系统进行仿真,验证所提算法在求解重构问题时得到的解更好,收敛速度和全局寻优能力都有提升。 相似文献
3.
4.
针对配电网中各种类型分布式电源接入所造成的配电网拓扑结构的复杂性,提出了一种改进粒子群优化算法应用于配电网重构,把粒子群算法和布谷鸟算法有效地结合在一起,采用两层种群框架。为了提高粒子群优化算法的全局搜索能力,采用中值聚类算法对下层粒子群进行重组,粒子群算法用于优化下层的各类小种群,然后将其发送到上层,使用布谷算法进行深度寻优。通过算例对多种情况进行仿真分析,验证改进算法在配电网重构中的优越性。结果表明,该算法能有效地降低配电网的有功网损,提高各节点的电压水平。本研究为我国分布式电源接入配电网的发展提供了参考和借鉴。 相似文献
5.
6.
7.
分布式电源优化布置与定容是智能电网发展中的重要课题之一,合理地对分布式电源进行选址和定容对于配电网规划非常重要。在研究分布式电源规划的基础上,建立了以有功网损最小为目标函数的优化模型,用罚函数法将分布式电源规划问题转化为无约束问题,并首次将量子粒子群优化算法应用到分布式电源选址和定容问题的求解中。对IEEE 33节点配电测试系统进行仿真计算,将仿真结果与标准粒子群算法进行比较,验证了量子粒子群算法具有一定的收敛性和适应性。 相似文献
8.
配电网重构的混合粒子群算法 总被引:14,自引:0,他引:14
通过将二进制粒子群算法和离散粒子群算法相结合,提出一种混合粒子群算法,求解配电网重构问题。在求解过程中,通过对配网支路进行分组,简化了网络,编码时每一支路组用1维表示,不仅显著降低了维数,缩短了编码长度,更有效降低了无效粒子的产生概率。在搜索过程中,根据该文总结的配电网重构的必要条件,有规律地将粒子进化,进一步提高了搜索效率。在优化过程中将每一次迭代由2步完成:第1步根据二进制粒子群算法中的sigmoid()函数值,利用轮盘赌的方法优化选择断开的支路组;第2步利用提出的离散粒子群算法优化选择在第1步中被选中断开的支路组的内部断开支路。最后对一个典型的69节点算例和一个实际算例进行仿真,结果显示,该方法不仅能快速收敛,而且稳定性好。 相似文献
9.
为保证配电网动态重构后系统安全稳定的运行,提出了以网损和节点电压稳定性为目标函数的量子粒子群算法的配电网动态重构。针对配电网动态重构过程中时段划分问题,提出以负荷曲线的单调性和幅值变化大小为依据初步划分时间段落。采用整数型量子粒子群算法进行动态重构,重构过程中以相邻时段的网损变化值的关系获取最佳重构段落,然后综合考虑配电网网损最小和节点电压值最大且波动最小为目标寻找最佳重构结构。以IEEE33配电系统为例验证了所提方法的有效性和实用性。 相似文献
10.
11.
配电网络重构和电容器投切是配电网络优化的两个重要内容,简单地迭加难以反映二者之间的联系和影响,不能到达整体最优的目的。将二者融为一体,提出了一种基于PSO的综合优化算法。算法借鉴了遗传算法的变异思想,对具有集聚倾向的粒子进行速度变异,避免了“早熟”现象;并结合配电网络综合优化问题的特点,适当地改进更新规则来同时处理不同类型的变量,引入“飞回”策略处理越限问题。算例结果表明所提算法不依赖于网络的初始状态,不易陷入局部最优,优化效果好。 相似文献
12.
基于改进粒子群动态搜索算法的配电网络重构研究 总被引:1,自引:0,他引:1
提出一种基于改进粒子群动态搜索算法的网络重构方法,算法把初始粒子群按照适应度的大小分为两个互不交叉,且具有不同分工的子群,并进行动态搜索.通过引入了交叉和禁忌思想,减少了解陷入局部最优的可能性.与遗传、禁忌搜索算法重构的结果进行比较,表明本文算法具有更高的搜索效率,更容易找到全局最优解. 相似文献
13.
提出一种基于改进粒子群动态搜索算法的网络重构方法,算法把初始粒子群按照适应度的大小分为两个互不交叉,且具有不同分工的子群,并进行动态搜索。通过引入了交叉和禁忌思想,减少了解陷入局部最优的可能性。与遗传、禁忌搜索算法重构的结果进行比较,表明本文算法具有更高的搜索效率,更容易找到全局最优解。 相似文献
14.
15.
将二进制粒子群优化算法的惯性因子进行了动态化自适应改进,设计了区别于标准遗传操作的高频交叉算子和随机自回馈变异算子,基于此提出了一种新算法——混合粒子群智能遗传算法(PGA)应用与配网的重构。在新型编码方案下,PGA应用两个遗传算子使种群保持多样性,避免陷入局部最优,同时结合PSO的快速群体智能寻优指导染色体的进化方向,能够使种群信息共享的同时提高算法的收敛速度,算例结果验证了新算法的可行性。 相似文献
16.
配电网络重构是一个非常复杂的大规模组合优化问题。网络重构中,能否得到有效解,即保证辐射状网络,是一个很关键的问题。对电网拓扑进行简化,配合破圈法更新粒子,得到100%的有效解,大大提高了计算速度。提出一种应用于配电网络重构的改进二进制粒子群优化算法,并结合禁忌搜索算法,使PSO算法跳出局部最优化陷阱,改善了算法的搜索效果,加快了寻优速度。最后对IEEE 69节点系统进行计算,并与相关文献结果进行对比,表明本文改进算法具有快速、高效的全局寻优能力。 相似文献