首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 77 毫秒
1.
随着网络安全防范意识增强,加密通信占据主流,加密流量快速增长。流量加密在保护隐私的同时,也掩饰非法企图,改变威胁形式。深度学习作为机器学习领域的重要分支,是流量分类的有力工具。近年来,将深度学习方法应用于入侵检测的研究不断深入,取得良好效果。在深入调研文献的基础上,将加密恶意流量检测的步骤总结归纳为“六步法”的一般检测框架模型,结合模型对数据处理及检测算法进行回顾总结,指出各类算法模型的优缺点,并对未来研究方向进行展望,以期为下一步研究提供帮助。  相似文献   

2.
首先介绍了安全传输层(TLS,transport layer security)协议的特点、流量识别方法;然后给出了一种基于机器学习的分布式自动化的恶意加密流量检测体系;进而从 TLS 特征、数据元特征、上下文数据特征3个方面分析了恶意加密流量的特征;最后,通过实验对几种常见机器学习算法的性能进行对比,实现了对恶意加密流量的高效检测。  相似文献   

3.
陈旖  张美璟  许发见 《计算机应用》2005,40(10):2973-2979
为解决HTTP慢速拒绝服务(SHDoS)攻击流量检测在攻击频率变化时出现的准确率降低的问题,提出一种基于一维卷积神经网络(CNN)的SHDoS攻击流量检测方法。首先,该方法在多种攻击频率下对三种类型的SHDoS攻击流量进行报文采样和数据流提取;之后,设计了一种数据流转换算法,将采集的攻击数据流转换为一维序列并进行去重;最后,使用一维CNN构建分类模型,该模型通过卷积核来提取序列片段,并从片段中学习攻击样本的局部模式,从而使模型对多种攻击频率的数据流都具备检测能力。实验结果显示,与基于循环神经网络(RNN)、长短期记忆(LSTM)网络及双向长短期记忆(Bi-LSTM)网络构建的分类模型相比,该模型对未知攻击频率的样本同样具有较好的检测能力,在验证集上的检测准确率和精确率分别达到了96.76%和94.13%。结果表明所提方法能够满足对不同攻击频率的SHDoS流量进行检测的需求。  相似文献   

4.
恶意加密流量的识别是网络安全管理的一项重要内容。然而,随着网络用户的增加,网络流量的数量和种类正以指数级增加,这给网络安全管理带来了新的挑战和威胁。传统的恶意加密流量识别方法依赖专家经验,且对恶意加密流量特征区分能力不强,不适用目前复杂网络的场景。本文提出了基于多头注意力的恶意加密流量检测方法,通过多头注意力,流量特征可以被映射到多个子空间并进行高阶流量特征的提取,通过一维卷积神经网络进一步提取数据包内部的空间特征。实验结果表明,该方法在CTU数据集上对正常、恶意加密流量的二分类取得了优异的检测效果。  相似文献   

5.
陈旖  张美璟  许发见 《计算机应用》2020,40(10):2973-2979
为解决HTTP慢速拒绝服务(SHDoS)攻击流量检测在攻击频率变化时出现的准确率降低的问题,提出一种基于一维卷积神经网络(CNN)的SHDoS攻击流量检测方法。首先,该方法在多种攻击频率下对三种类型的SHDoS攻击流量进行报文采样和数据流提取;之后,设计了一种数据流转换算法,将采集的攻击数据流转换为一维序列并进行去重;最后,使用一维CNN构建分类模型,该模型通过卷积核来提取序列片段,并从片段中学习攻击样本的局部模式,从而使模型对多种攻击频率的数据流都具备检测能力。实验结果显示,与基于循环神经网络(RNN)、长短期记忆(LSTM)网络及双向长短期记忆(Bi-LSTM)网络构建的分类模型相比,该模型对未知攻击频率的样本同样具有较好的检测能力,在验证集上的检测准确率和精确率分别达到了96.76%和94.13%。结果表明所提方法能够满足对不同攻击频率的SHDoS流量进行检测的需求。  相似文献   

6.
现有加密恶意流量检测方法需要利用大量准确标记的样本进行训练,以达到较好的检测效果。但在实际网络环境中,加密流量数据由于其内容不可见而难以进行正确标记。针对上述问题,提出了一种基于迁移学习的加密恶意流量检测方法,首次将基于ImageNet数据集预训练的模型Efficientnet-B0,迁移到加密流量数据集上,保留其卷积层结构和参数,对全连接层进行替换和再训练,利用迁移学习的思想实现小样本条件下的高性能检测。该方法利用端到端的框架设计,能够直接从原始流量数据中提取特征并进行检测和细粒度分类,避免了繁杂的手动特征提取过程。实验结果表明,该方法对正常、恶意流量的二分类准确率能够达到99.87%,加密恶意流量细粒度分类准确率可达到98.88%,并且在训练集中各类流量样本数量减少到100条时,也能够达到96.35%的细粒度分类准确率。  相似文献   

7.
恶意加密流量识别公开数据集中存在的类不平衡问题,严重影响着恶意流量预测的性能。本文提出使用深度生成对抗网络DGAN中的生成器和鉴别器,模拟真实数据集生成并扩展小样本数据,形成平衡数据集。此外,针对传统机器学习方法依赖人工特征提取导致分类准确度下降等问题,提出一种基于双向门控循环单元BiGRU与注意力机制相融合的恶意流量识别模型,由深度学习算法自动获取数据集不同时序的重要特征向量,进行恶意流量得识别。实验表明,与常用恶意流量识别算法相比,该模型在精度、召回率、F1等指标上都有较好的提升,能有效实现恶意加密流量的识别。  相似文献   

8.
针对使用传统机器学习方法来识别恶意TLS流量受到专家经验的影响较大、识别与分类效果不理想的问题,提出了HNNIM(Hybrid Neural Network Identification Model)模型来进行识别与分类.模型由两层组成:第一层用于提取特征,第二层用于识别与分类.第一层中,提取的特征分为两部分,一部分特...  相似文献   

9.
邹福泰  俞汤达  许文亮 《软件学报》2022,33(7):2683-2698
近年来,随着网络加密技术的普及,使用网络加密技术的恶意攻击事件也在逐年增长,依赖于数据包内容的传统检测方法如今已经无法有效地应对隐藏在加密流量中的恶意软件攻击.为了能够应对不同协议下的加密恶意流量检测,提出了基于ProfileHMM的加密恶意流量检测算法.该方法利用生物信息学上的基因序列比对分析,通过匹配关键基因子序列,实现识别加密攻击流量的能力.通过使用开源数据集在不同条件下进行实验,结果表明了算法的有效性.此外,设计了两种规避检测的方法,通过实验验证了算法具有较好的抗规避检测的能力.与已有研究相比,该工作具有应用场景广泛以及检测准确率较高的特点,为基于加密流量的恶意软件检测研究领域提供了一种较为有效的解决方案.  相似文献   

10.
网络流量加密在保护企业数据和用户隐私的同时, 也为恶意流量检测带来新的挑战. 根据处理加密流量的方式不同, 加密恶意流量检测可分为主动检测和被动检测. 主动检测包括对流量解密后的检测和基于可搜索加密技术的检测, 其研究重点是隐私安全的保障和检测效率的提升, 主要分析可信执行环境和可控传输协议等保障措施的应用. 被动检测是在用户无感知且不执行任何加密或解密操作的前提下, 识别加密恶意流量的检测方法, 其研究重点是特征的选择与构建, 主要从侧信道特征、明文特征和原始流量等3类特征分析相关检测方法, 给出有关模型的实验评估结论. 最后, 从混淆流量特征、干扰学习算法和隐藏相关信息等角度, 分析加密恶意流量检测对抗研究的可实施性.  相似文献   

11.
随着科技的发展,个人电脑和手机成为现代社会中所不可缺少的智能设备。个人电脑和手机中丰富的应用程序通过互联网给用户提供诸如实时聊天、邮件、下载等便捷的网络服务。但是,这些设备的普及也吸引了大量的恶意攻击者,恶意应用程序和恶意流量随之产生。针对这一问题,在恶意流量分类检测的基础上,基于孪生神经网络提出一种端到端的单样本检测方法。对样本数据进行预处理转化为灰度图像,在TensorFlow深度学习框架下对图像样本进行训练学习,通过对比灰度图像间的相似程度实现了恶意流量的检测。提出的方法不仅能够实现端到端的单样本检测,而且在样本不均衡的分类问题上也给出了一种解决方案。最终的实验检测准确率可达95.04%,证明了该方法的可行性和科学性。  相似文献   

12.
苗甫  王振兴  张连成 《计算机工程》2011,37(18):131-133
采用加密和隧道技术的恶意代码难以检测。为此,提出基于流量统计指纹的恶意代码检测模型。提取恶意代码流量中的包层特征和流层特征,对高维流层特征采用主成分分析进行降维,利用两类特征的概率密度函数建立恶意代码流量统计指纹,使用该指纹检测网络中恶意代码通信流量。实验结果表明,该模型能有效检测采用加密和隧道技术的恶意代码。  相似文献   

13.
未知恶意网络流量检测是异常检测领域亟待解决的核心问题之一.从高速网络数据流中获取的流量数据往往具有不平衡性和多变性.虽然在恶意网络流量异常检测特征处理和检测方法方面已存在诸多研究,但这些方法在同时解决数据不平衡性和多变性以及模型检测性能方面仍存在不足.因此,本文针对未知恶意网络流量检测目前存在的困难,提出了一种基于集成SVM和Bagging的未知恶意流量检测模型.首先,针对网络流量数据的不平衡性,提出一种基于Multi-SMOTE过采样的流量处理方法,以提高流量处理后的特征质量;第二,针对网络流量数据分布的多样性,提出一种基于半监督谱聚类的未知流量筛选方法,以实现从具有多样分布的混合流量中筛选出未知流量;最后,基于Bagging思想,训练了集成SVM未知恶意流量检测器.实验结果表明,本文所提出的基于集成SVM与Bagging的未知流量攻击类型检测模型在综合评价(F1分值)上优于目前同类未知恶意流量检测方法,同时在不同数据集上具有较好的泛化能力.  相似文献   

14.
在当今信息爆炸、网络快速发展的时代,网络攻击与网络威胁日益增多,恶意流量识别在网络安全中发挥着非常重要的作用。深度学习在图像处理、自然语言处理上已经展现出优越的性能,因此有诸多研究将深度学习应用于流量分类中。将深度学习应用于流量识别时,部分研究对原始流量数据进行截断或者补零操作,截断操作容易造成流量信息的部分丢失,补零操作容易引入对模型训练无用的信息。针对这一问题,本文提出了一种用于恶意流量分类的不定长输入卷积神经网络(Indefinite Length Convolutional Neural Network, ILCNN),该网络模型基于不定长输入,在输入时使用未截断未补零的原始流量数据,利用池化操作将不定长特征向量转化为定长的特征向量,最终达到对恶意流量分类的目的。基于CICIDS-2017数据集的实验结果表明, ILCNN模型在F1-Score上的分类准确率能够达到0.999208。相较于现有的恶意流量分类工作,本文所提出的不定长输入卷积神经网络ILCNN在F1-Score和准确率上均有所提升。  相似文献   

15.
随着加密流量的广泛使用,越来越多恶意软件也利用加密流量来传输恶意信息,由于其传输内容不可见,传统的基于深度包分析的检测方法带来精度下降和实时性不足等问题.本文通过分析恶意加密流量和正常流量的会话和协议,提出了一种结合多特征的恶意加密流量检测方法,该方法提取了加密流量会话的包长与时间马尔科夫链、包长与时间分布及包长与时间...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号