首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了控制Zr(-Ti)-Cu-Ni-Al非晶合金中的O含量,进而改善其玻璃形成能力和力学性能,本研究基于稀土元素与O的强相互作用,向合金中添加Y、Gd、La和Ce等元素。使用铜模浇铸制备非晶合金,利用DSC、XRD和TEM对其非晶形成能力和微观结构进行分析,通过压缩试验和SEM对其力学性能及断裂方式进行表征。结果表明:Y的添加对合金的非晶形成能力具有较大的提升,在相对较低真空的气氛下,可制备出直径10mm以上的块体非晶,抗压缩断裂强度达1950 MPa。  相似文献   

2.
The dynamic mechanical behaviors of the Zr41Ti14Cu12.5Ni8Be22.5Fe2 bulk metallic glass (BMG) during continuous heating at a constant rate were investigated. The glass transition and crystallization of the Zr-based BMG were thus characterized by the measurements of storage modulus E and internal friction Q-1. It was found that the variations of these dynamic mechanical quantifies with temperature were interre-lated and were well in agreement with the DSC trace obtained at the same heating rate. The origin of the first peak in the internal friction curve was closely related to the dynamic glass transition and subsequent primary crystallization. Moreover, it can be well described by a physical model, which can characterize atomic mobility and mechanical response of disordered condense materials. In comparison with the DSC trace, the relative position of the first internal friction peak of the BMG was found to be dependent on its thermal stability against crys-tallization.  相似文献   

3.
采用悬浮熔炼-铜模吸铸法制备了Cu50Zr42Al8块体金属玻璃,研究了其楔形试样的组织演变.随着熔体凝固过程中冷却速度的变化,楔形试样中存在表面全非晶区,中心晶体区以及二者之间的过渡区域,并确定Cu50Zr42Al8块体金属玻璃临界尺寸为4.8 mm.分别考察了φ4 mm铸态完全非晶棒和φ5 mm非晶复合棒的力学性能.φ4 mm非晶棒的压缩断裂强度,弹性应变和塑性应变分别为2260 MPa,2.0%,0.4%,几乎没有塑性变形.而φ5 mm铸态非晶复合棒的屈服强度、断裂强度分别为1670MPa、1849 MPa,弹性应变和塑性应变分别为1.6%和1.9%.非晶基体中存在的马氏体相CuZr和正交晶相Cu10Zr7的竞争影响了非晶复合棒的最终力学行为.  相似文献   

4.
采用统计学方法研究了应变速率对Zr_(67.76)Cu_(11.94)Ni_(8.30)Al_(12)非晶复合材料力学性能及锯齿流变行为的影响。结果表明:随着应变速率的增加,材料的塑性应变减小,抗压强度下降;同时应力降幅Δσ的锯齿分布从单调下降分布转变为峰状分布,应力降幅的频数由小应力降幅区间向大应力降幅区间过渡,单位塑性应变的锯齿频数M呈下降趋势,试棒侧面剪切带数量减少且相互交割、分支、阻止作用明显减弱,此时,由多重剪切带扩展转变为单一剪切带扩展,使得材料的力学性能迅速下降。  相似文献   

5.
探究了冷却速率对Ti40.9Zr30.4Nb4.2Cu7Ni1.7Be15.8内生型非晶合金复合材料组织结构及力学性能的影响。采用铜模铸造法制备内生型非晶复合材料,通过控制复合材料的尺寸来控制冷却速率,尺寸越大冷却速率越慢。利用XRD、SEM、DSC、万能力学试验机等对非晶合金复合材料的组织结构及力学性能等进行表征。结果表明,随冷却速率的降低,枝晶相发生熟化且尺寸增大;压缩试验证明,冷却速率显著影响复合材料的压缩性能,随冷却速率的降低,加工硬化能力变强,抗压强度显著提高,最高达到1921 MPa,但屈服强度略有降低;拉伸试验证明,冷却速率对非晶复合材料的屈服强度和抗拉强度等影响不大,最高抗拉强度达到1469 MPa。  相似文献   

6.

(Cu43Zr48Al9)98Y2-based bulk metallic glass composites (BMGCs) with dispersed Ta particles (3vol.%, 6vol.%, 9vol.%) were successfully fabricated through suction casting. The thermal properties, microstructure, and mechanical properties of the BMGCs were systematically investigated. Ta particles are homogeneously dispersed in the amorphous matrix. Ta particle reinforced BMGCs exhibit similar thermal properties and glass-forming ability with the (Cu43Zr48Al9)98Y2 base BMG. Compression test results show that the BMGC with 9vol.% Ta particles has superior mechanical performance with up to 15.7% compressive plastic strain, 2,216 MPa yield strength, and 2,260 MPa fracture strength at room temperature. These homogeneously distributed Ta particles act as discrete obstacles in the amorphous matrix, restricting the highly localized shear band. This results in the formation of multiple shear bands around the Ta-rich particles, which lowers the stress concentration, allowing the shear band to propagate further and improve plasticity.

  相似文献   

7.
采用铜模铸造法制备Cu45Zr42.55Y3.45Al9块体非晶合金,利用三点压弯式粘度仪测定了合金在过冷液区附近的粘度,对合金进行热塑性性能的研究.通过计算得到Cu45Zr42.55Y3.45Al9非晶合金的脆性参数m为31,衡量非晶合金的热塑性加工性能参数m·△T*rx为3.1.在与已报道的有很好可塑性的Cu46Zr42Y5Al7非晶合金比较,可知Cu45Zr42.55Y3.45Al9非晶合金有更好的热塑性性能.此外少量Y元素的添加影响了非晶合金的热塑性.  相似文献   

8.
The origin of a two-stage endothermic reaction in Zr36Ti24Be40 metallic glass was investigated by differential scanning calorimetry (DSC), thermo-mechanical analyzer (TMA) and high resolution transmission electron microscopy (HREM). HREM image of a specimen heated to 420°C under a constant applied tensile stress of 3 MPa showed the formation of medium-range-ordered clusters 1 nm to 2 nm in size. This phenomenon is attributed to strain-induced deformation. This suggests that the formation of clusters may be an appropriate interpretation of the additional endothermic heat in the supercooled liquid region.  相似文献   

9.
1 Introduction Since the Au-Si metallic glass were firstly prepared by rapid cooling technique in 1960 by DUWEZ et al[1], the study of structure and property of metallic glass has received much attention. The atom transportation behaviors (rheological an…  相似文献   

10.
通过磁悬浮熔炼和铜模吸铸法制备直径3mm的(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4)合金试样,研究Fe元素的微量添加对Zr55Al10Ni5Cu30块体金属玻璃非晶形成能力和力学性能的影响。研究表明,合理添加Fe元素(不超过3%,摩尔分数)导致约化玻璃转变温度Trg(=Tg/Tl)和参数γ(=Tx/(Tg+Tl))增大,因而其非晶形成能力增大,但添加过量的Fe元素(4%)会导致其非晶形成能力的降低。添加Fe元素也会显著地改善Zr55Al10Ni5Cu30块体金属玻璃的压缩塑性及提高其压缩断裂强度,当Fe元素的添加量为2%时,直径3mm、长度6mm的试样在压缩时出现一定的塑性及加工硬化现象。Fe元素添加量为4%形成的金属玻璃基复合材料,同样也显示良好的压缩塑性和高的压缩断裂强度。  相似文献   

11.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   

12.
全程真空压铸技术的快速发展为大块非晶合金的工业化应用提供了可能,受到了广泛关注。但是,非晶合金的室温脆性限制了压铸结构件在一些关键领域的应用。本论文利用压铸工艺高速充型及高压凝固的特性,通过在Vit1锆基非晶合金中引入304不锈钢网叠层焊接制造的骨架,成功制备出了不同体积分数晶态相增强的非晶复合材料,并系统研究了不锈钢网体积分数对力学性能的影响。研究结果表明,不锈钢网在非晶基体中均匀分布,与非晶合金存在冶金界面结合。力学性能测试显示,随着不锈钢编织网的引入,室温脆性的压铸Vit1块体金属玻璃的塑性得到了显著提升。随着不锈钢网目数增大(对应晶态相体积分数增大),非晶复合材料的塑性呈增大的趋势,但是,当目数超过200时,过细的孔洞会导致骨架局部区域无法填充,恶化性能。当晶态相的体积分数为53.7%时,断裂应变达到最大值,约为10%左右,其值高于传统不锈钢纤维增韧的Zr基非晶复合材料。韧化机制分析表明,压铸非晶合金出现脆-延性转变的根本原因是不锈钢网对剪切带扩展进行高效抑制,促进剪切带的增殖和萌生,减少宏观塑性变形的局域化。本研究为非晶复合材料的结构设计提供了新的思路,对于促进非晶合金的更广泛应用具有重要的工程价值。  相似文献   

13.
Crystallization kinetics and phase transformation of bulk Fe64 Co7 Zr6 Nd3B20 metallic glass were studied by X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Based on the Kissinger analyses, the activation energies for the nucleation and growth during the first, second and third crystallization-stages of the metallic glass are determined to be 294, 475 and 365 kJ/mol, respectively, and the activation energy for the glass transition is determined to be 1 242 kJ/mol. The Johnson-Mehl-Avrami (JMA) analysis under the isothermal condition reveals that the crystallization process is a three-dimensional controlled growth of nuclei at a constant nucleation rate. The crystalline grains are in the size of less than 50 nm after the selected annealing treatments. In the completely crystallized state, the alloy exhibits the maximum coercivity (Hc) of 34.8 kA/m and corresponding energy product of 11 kJ/m^3.  相似文献   

14.
The crystallization process of metallic glass Zr65Al7.5Ni10Cu17.5, (atom fraction in %) were studied by transmission electron microscopy and X-ray diffraction. Two stages of crystallization process, which are indicated by the two exothermic peaks in the differential scanning calorimetry diagram, were studied separately. It is found that the phases in the various stage of the crystallization are different, In the first stage, it consists mainly of tI-CuZr2 and tP-Al2Zr3 phases, between which a definite orientation relationship is found. While in the second stage, in addition to the above phases, phase hP2-Al2NiZr6 and phase hP3-α-Zr appear, between which another orientation relationship is also found. At the same time, a comparison is made based on the study of the phases exist in the arc-melted master ingot. The lattice parameters of the identified phases were determined and some interesting similarities were found. According to these similarities, all the phases were classified into two groups. The fi  相似文献   

15.
The effect of partial substitution of Al for Cu on the glass forming ability(GFA) and mechanical properties of Mg65Cu25-xAlxGd10 (x=0, 1, 3 and 5, molar fraction, %) alloys were studied by X-ray diffi-actometry(XRD), differential scanning calorimetry(DSC) and uniaxial compression test. The result reveals that GFA of the alloys changes slightly with increasing x from 0 to 3, and then abruptly decreases with x increasing up to 5. The plasticity can be greatly improved with appropriate substitution of Cu by A1 (3%, molar fraction) in Mg65Cu25Gd10 bulk metallic glass, and the resultant fracture strength, total strain to failure, and plastic strain are 898 MPa, 2.19% and 0.2%, respectively.  相似文献   

16.
采用传统激光焊接技术连接块体非晶合Zr45Cu48A17,试验结果显示:焊接速率为2m/min时,熔化区主要生成τ5(Zr38Cu36A126)相,热影响区主要生成ZrCu,含有少量τ5相;焊接速率为4m/min时,熔化区保持了非晶特性,热影响区有晶粒生成;当焊接速率8m/min时,热影响区和熔化区均保持非晶特性。  相似文献   

17.
To overcome some of the limits of existing metallic alloys, a new alloy design concept has been introduced recently in order to control the crystallinity, i.e. to utilize crystalline, quasicrystalline, and amorphous structures. In particular, bulk metallic glasses (BMGs) receive great attention because of their unique properties due to their different atomic configuration. Recently, significant progress in enhancing glass forming ability (GFA) has led to the fabrication of BMGs having potential for application as structural and functional materials. Moreover, successful design of BMG matrix composite microstructure suggests that the plasticity of BMGs can be controlled properly. In this review article, we introduce recent research results on the design of BMGs with high GFA and on the enhancement of plasticity in metallic glass matrix composites.  相似文献   

18.
报道一种新奇的现象,即随着Fe75Mo5P10C8.3B1.7块体金属玻璃的直径从1.5mm增加到2.0mm,其室温压缩塑性反而从0.5%增加到1.8%。这主要归因于随着铁基块体金属玻璃样品直径的增加,原位形成了零星的α-Fe枝晶相,这种在边缘化的块体金属玻璃中出现的异质结构是提高当前铁基块体金属玻璃室温塑性的主要原因。  相似文献   

19.
The deformation behavior and macroscopic formability of a Zr-based bulk metallic glass composite (BMGC) has been investigated in this study by performing a series of compression and laboratory-scale extrusion tests under various deformation rates within the supercooled liquid temperature region. The morphology of Zr−Ti−Nb-rich dendrite precipitates after warm deformation was first examined by using optical microscopy (OM) and a field emission scanning electron microscope (FE-SEM). The extrusion of this BMGC alloy within the supercooled liquid temperature region was found more difficult than the extrusion of other Zr-based monolithic BMG alloys, possibly due to the existence of dendrite phases hindering the characteristic viscous flow generated in the amorphous phase. A FEM simulation has also been carried out by utilizing the stress-strain behaviors obtained from high temperature compression tests, and the results have been compared with the experimental extrusion test results. The FEM simulation results for the extrusion process as well as a processing map based on a dynamic materials model (DMM) were found to agree relatively well with the actual macroscopic extrusion formability.  相似文献   

20.
在水冷铜坩埚中采用铜模吸铸法以不同的铸造温度制备出直径3mm的Zr53.9Cu29.4Ni4.9Al9.8Fe2合金试样,研究了铸造温度对锆基块体金属玻璃力学性能和组织的影响。研究结果表明,对于试样的非晶结构,存在一个临界铸造温度,低于此温度会有晶体相析出。在一定范围内提高铸造温度可以提高锆基块体金属玻璃的压缩断裂强度和轻微降低塑性。当铸造电压升高至9kV时,不但可以提高合金试样的压缩断裂强度,同时提高其塑性,其塑性达到2.62%。通过控制与自由体积和残余应力相关的铸造温度,可以调节锆基块体金属玻璃的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号