首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
铜冶炼渣中含有铜、铁等有价金属,其中铜金属可通过直接浮选回收,但铁的矿物组成复杂,很难直接通过磁选回收。以含铁38.76%、含铜2.26%的铜冶炼渣为研究对象,在矿石性质研究基础上,以烟煤为还原剂,通过直接还原焙烧—磁选工艺回收铜渣中的铜、铁。结果表明,铜冶炼渣、烟煤和还原助剂氧化钙以100∶25∶20的质量比混合,在焙烧温度1 200 ℃,焙烧时间80 min的条件下直接还原焙烧铜渣;焙砂在磨矿细度为-0.045 mm含量占80%,磁场强度为111 kA/m的条件下进行磁选试验,最终可获得铁品位为91.54%,铁回收率为90.54%,铜品位为6.06%、铜回收率为89.04%的含铜铁精矿,研究结果可为铜冶炼渣的回收利用提供依据。  相似文献   

2.
铜渣贫化的选择性还原过程   总被引:7,自引:0,他引:7  
借助于金相分析、SEM和EDX等方法,研究炼铜炉渣加炭粉、通惰性气体搅拌选择性还原贫化过程。结果表明,通过选择性贫化过程,渣中残余铜含量可由5%降低到0.35%以下。随气体搅动时间延长,渣中Fe3O4含量降低,二价铁含量增加,有效地降低了渣黏度.促进冰铜滴沉降。在还原过程中,渣中Fe3O4含量逐渐降低,渣中主要存在的相组成为残余磁性氧化铁、(FeO)2·SiO2及FeO·CaO·SiO2的连续固溶体。每1kg铜渣配人17g炭粉既可满足还原反应要求。  相似文献   

3.
采用浮选—还原焙烧—磁选工艺对某铜冶炼渣回收铜、铁进行研究。试验结果表明,采用硫化浮选法回收铜渣中的铜,可得到铜品位31.29%、铜回收率87.81%的铜精矿;选铜后的尾矿再通过还原焙烧—磁选工艺回收铁,可得到铁品位92.6%、铁回收率91.33%的还原铁粉。  相似文献   

4.
以内蒙古赤峰某铜冶炼企业的铜浮选尾渣为研究对象,利用X射线衍射分析、光学显微镜、MLA矿物自动测量系统对尾渣进行较为系统的工艺矿物学分析,系统研究了冶炼渣中主要矿物物相的嵌布特征和嵌布粒度,并分析了该铜浮选尾渣的综合回收方案。结果表明,铜浮选尾渣中铁和锌的含量分别为39.75%和2.45%,渣的主要矿相为磁铁矿、铁橄榄石及玻璃相,粒度较细,单体解离度仅为32.15%。单独磁选富集磁铁矿获得高品位铁精矿的难度较大,建议采用直接还原磁选工艺进行选铁,磁选尾矿可作为水泥的原料。  相似文献   

5.
某鲕状赤铁矿深度还原过程研究   总被引:7,自引:0,他引:7  
研究了某鲕状赤铁矿深度还原过程中铁矿物随还原时间的变化特性,讨论了金属铁颗粒的生长过程。研究结果表明,该鲕状赤铁矿深度还原过程中铁的氧化物是按照Fe2O3→Fe3O4→FeO→Fe的顺序直接还原为金属铁的。随还原时间的延长,金属铁颗粒以小颗粒向大颗粒聚集的方式逐渐长大,最终以铁颗粒的形式存在于还原后的产物中。  相似文献   

6.
何云龙  沈强华  陈雯  刘云亮  王勇 《矿冶》2012,21(3):44-47
提出把传统的P-S转炉改造为具有将燃料喷射进炉膛保温和固体还原剂从风口喷入熔池功能的还原转炉,创造弱还原气氛处理铜吹炼渣的新工艺。研究结果表明,该工艺能耗低,Fe3O4还原彻底,铜回收率高。处理50 t含Fe3O4为41%的吹炼渣,当控制炉温为1250℃、煤基还原剂输送速率为30 kg/min、渣中Fe/SiO2=1.25时,可将渣中的Fe3O4降至5%以下。工业验证性试验表明,用此工艺处理50 t含Fe3O4为46%的转炉渣,经过还原后弃渣含Cu 0.34%、含磁性氧化铁3.55%,铜的回收率为89.4%。  相似文献   

7.
采用高温快速还原焙烧-磁选工艺从铜冶炼渣回收铁, 系统研究了碱度(CaO/SiO2)、还原温度、还原时间、还原剂用量等因素对磁选金属铁粉质量的影响。结果表明, 铜渣中的铁主要以铁橄榄石形式存在, 其次为磁铁矿; 在碱度(CaO/SiO2)0.6、焦粉配比12%、还原温度1 300 ℃、还原时间30 min、铜渣粒度-0.074 mm粒级占95%、磁场强度0.08 T的条件下, 可得到铁品位91.10%、金属化率94.27%的金属铁粉。  相似文献   

8.
苏凤来  张登高  郑朝振 《矿冶》2020,29(6):51-55,73
刚果(金)某地区经浮选得到的氧化铜精矿,含铜28.39 %,矿石中的铜主要赋存在孔雀石中。在实际生产中,采用鼓风炉还原熔炼处理该类氧化铜精矿,存在熔炼温度较高、氧化钙添加量大、熔炼渣含铜偏高的问题,为此,进行渣型优化实验研究,考察了还原焦比、CaO:SiO2比和氧化亚铁加入量对氧化铜精矿还原熔炼的影响。结果表明,在还原熔炼时,焦比主要影响粗铜产率和铜回收率,CaO:SiO2主要影响渣中铜含量,熔炼温度是影响渣黏度的主要因素。在还原焦比为5 %,选择酸性熔炼渣型,渣中CaO:SiO2为0.4-0.55,FeO:SiO2为0.13条件下,渣含铜可降至0.4 %以下,铜回收率在98 %以上。  相似文献   

9.
铜尾渣深度还原回收铁工艺研究   总被引:1,自引:0,他引:1  
为给含铁铜渣深度资源化利用提供技术依据,以国内某铜渣磨矿-浮选选铜尾矿为原料,以焦粉为还原剂、氧化钙为添加剂,以含铁硅酸盐还原成金属铁为目标,以还原产物磨矿-弱磁选精矿指标为评价依据,进行了还原焙烧工艺条件研究。试验结果表明:①还原温度和还原时间对还原效果影响显著;②在氧化钙用量为6%、焦粉用量为14%、还原温度为1 300 ℃、还原时间为2 h情况下,获得的金属铁粉的铁品位为92.96%、铁回收率为93.49%,且杂质硫磷含量低,属优质炼钢辅料。铜尾渣深度还原产物的SEM分析表明,还原产物中金属铁颗粒粒度较均匀,形状较规则,嵌布关系较简单,无明显夹杂其他渣相的现象,这为后续磨选作业实现铁颗粒的较好解离和获得较好分选指标创造了条件。  相似文献   

10.
以河北承德某铁品位为61.08%,TiO2品位为7.66%的钒钛磁铁精矿为研究对象,进行了钒钛磁铁精矿深度还原-磁选试验研究。考察了还原温度、还原时间、C/O摩尔比、CaCO3添加量对还原产物和分选指标的影响。在还原温度为1350℃、还原时间120min、C/O摩尔比2.5、CaCO3添加量为16%、磁选场强为85mT的条件下,可以得到全铁品位为87.19%、铁回收率为82.62%的磁性产品和TiO2品位18.76%、TiO2回收率为79.40%非磁性产品。由还原产物的金属化率与XRD分析得知,钛磁铁矿向铁氧化物、钛氧化物和金属铁的转化较难发生,适当增加CaCO3的用量,能促进钛磁铁矿向CaTiO3、铁氧化物和金属铁的转化。   相似文献   

11.
针对铜渣"焙烧—磁选"回收利用工艺的不足,探究了一种"湿法烟气脱硫—磁选"工艺的可行性。通过对比分析铜渣和模拟脱硫渣的磁选效果,主要考察了磁场强度对两种渣中Fe的回收及其他有害元素脱除的影响规律。XRD结果表明脱硫渣中Fe主要以磁铁矿(Fe_3O_4)和铁橄榄石(Fe_2SiO_4)形式存在。磁选对脱硫渣中Fe的富集有显著作用,Si含量较低的磁铁矿进入粗精矿中,Fe品位可达50%以上,满足铁矿石产品标准(GB 32545—2016)中磁精矿五级标准。铜渣直接磁选后可达到与脱硫渣相近的效果,其粗精矿Fe磁选效果(46%)略低于脱硫渣(50%)。粗精矿中Si(5.5%)和Zn(1.1%)超标相比脱硫渣严重。综合考虑,铜渣经烟气脱硫后再进行磁选,其利用价值更高。  相似文献   

12.
降低铜密闭鼓风炉富氧熔炼四氧化三铁影响的生产实践   总被引:3,自引:0,他引:3  
金永新 《矿冶》2003,12(2):63-65,68
在铜密闭鼓风炉熔炼过程中,Fe3O4会从冰铜和炉渣中析出,沉积在炉底、炉侧壁及前床,严重影响生产。通过适当提高转炉渣中SiO2含量(21%~24%),可以减少进入鼓风炉(转炉渣作为块料)的Fe3O4量;选择并控制合理的熔炼渣型(Fe31%~35%、SiO233%~36%、CaO11%~13%,SiO2/Fe≈1 13,渣含Cu<0 30%)及精心操作,成功地避免了Fe3O4对鼓风炉生产的危害。  相似文献   

13.
昂正同 《矿冶》2002,11(4):69-72
闪速炉炼铜炉渣中含Fe3 O4较高 ,这是渣含铜高和沉淀池结瘤的主要原因。本文结合生产实践 ,论述了Fe3 O4在闪速熔炼过程中的生成机理 ,并在生产中采取一系列措施 ,如 :通过下料管、分布器等设备改造改善精矿喷嘴性能 ,反应塔加焦粉 ,沉淀池加生铁 ,并适当提高炉渣SiO2 含量等 ,以减少Fe3 O4对生产过程的危害。  相似文献   

14.
红土镍矿电炉还原炼镍铁合金的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
卢红波 《矿冶》2012,21(3):60-64
综述了我国红土镍矿电炉还原炼镍铁的研究进展,重点总结了炼镍铁的机理与研究现状,分析了该技术的难点及其发展趋势。结果表明:红土镍矿中各氧化物的还原先后顺序为NiO>NiFe2O4>Fe2O3>SiO2>MgO。SiO2/MgO在1.6~2.8,FeO含量在20%~30%时,渣与金属密度差异大,且具有良好的流动性,有利于渣与金属分离,提高镍的直收率。渣型对脱硫影响也较大,在碱性渣范围内适当提高炉渣碱度,有利于炉渣脱硫,但是碱度过大会导致渣黏度变大而对脱硫不利。采用电炉还原熔炼工艺生产镍铁具有流程短、镍铁品位易控、金属回收率高的优点,但对于强化冶炼过程、提高作业效率、进一步提高镍铁合金的金属镍含量等问题还有待在生产实践中继续摸索解决。  相似文献   

15.
湖北某铜冶炼厂电炉渣浮选铜后的尾渣,Fe品位为35.37%,Mo品位为0.30%,其中铁主要以磁铁矿和铁橄榄石形式存在,钼存在形式复杂,以氧化物为主,同时与铜渣中Si、Fe等之间形成化学键。若采用 直接磁选回收铁,常规浮选回收钼,铁与钼均不能被有效回收。为使铜渣中的铁与钼资源可最大化回收再利用,以煤粉作还原剂,氧化钙与氧化铝作造渣剂,采用熔融直接还原工艺制备铁钼合金,从而一并回收铜渣 中的铁和钼。探讨了还原温度、还原时间、煤粉用量、氧化钙用量、氧化铝用量等因素对Fe、Mo在合金中的回收率及品位的影响。结果表明在还原温度1 400 ℃、还原时间60 min、煤粉用量、氧化钙用量、氧化铝用 量分别是铜渣量的20%、20%、10%等优化条件下,Fe、Mo在合金中回收率分别为89.03%、98.44%,品位分别为91.70%、0.86%。  相似文献   

16.
新疆某镜铁矿矿石TFe含量为35.20%,CaO含量为30.64%;铁矿物主要为镜铁矿,脉石矿物主要为方解石和石英。矿石中镜铁矿嵌布粒度微细,属于难选铁矿石。为考察矿石磁化焙烧过程物相转变规律,进行了焙烧温度、焙烧时间和配煤比对其磁化焙烧效果、铁物相转变过程的影响规律试验。结果表明:在配煤比为12%、焙烧温度为800 ℃、焙烧时间为75 min条件下还原焙烧后,焙烧产品磨细至-0.074 mm占90%,在磁场强度为120 kA/m条件下弱磁选,可获得铁品位为65.95%、回收率77.70%的指标。焙烧温度对镜铁矿磁化焙烧过程影响显著。焙烧温度低于800 ℃时镜铁矿磁化焙烧转变为Fe3O4,焙烧温度为800 ℃时,焙烧产品Fe3O4含量最高;焙烧温度高于800 ℃时,部分Fe3O4又被还原为FeO,产生过还原现象;焙烧温度为900 ℃时,焙烧产品FeO含量最高;焙烧温度达到1 000 ℃时部分FeO被还原成金属Fe。此过程与磁选结果的变化规律相符。另外,焙烧温度达到900 ℃时,部分Fe2O3与CaO反应,生成了2CaO·Fe2O3,不能通过弱磁选回收。试验结果为该镜铁矿资源的合理利用提供了技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号